Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gourieroux, C. & Jasiak, J., 2023.
"Time varying Markov process with partially observed aggregate data: An application to coronavirus,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 35-51.
- Christian GOURIEROUX & Joann JASIAK, 2020. "Time Varying Markov Process with Partially Observed Aggregate Data; An Application to Coronavirus," Working Papers 2020-11, Center for Research in Economics and Statistics, revised 08 May 2020.
- Arianna Agosto & Paolo Giudici, 2020.
"A Poisson Autoregressive Model to Understand COVID-19 Contagion Dynamics,"
Risks, MDPI, vol. 8(3), pages 1-8, July.
- Arianna Agosto & Paolo Giudici, 2020. "A Poisson autoregressive model to understand COVID-19 contagion dynamics," DEM Working Papers Series 185, University of Pavia, Department of Economics and Management.
- Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021.
"Sparse HP filter: Finding kinks in the COVID-19 contact rate,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Department of Economics Working Papers 2020-06, McMaster University.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Working Paper Series no136, Institute of Economic Research, Seoul National University.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Papers 2006.10555, arXiv.org, revised Jul 2020.
- Sokbae (Simon) Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," CeMMAP working papers CWP32/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023.
"Time series analysis of COVID-19 infection curve: A change-point perspective,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
- Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2020. "Time Series Analysis of COVID-19 Infection Curve: A Change-Point Perspective," Papers 2007.04553, arXiv.org.
- Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021.
"Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
- Ali Hortaçsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19," NBER Working Papers 27028, National Bureau of Economic Research, Inc.
- Ali Hortacsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19," CeMMAP working papers CWP21/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021.
"Panel forecasts of country-level Covid-19 infections,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Panel Forecasts of Country-Level Covid-19 Infections," NBER Working Papers 27248, National Bureau of Economic Research, Inc.
- Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
- Ganna Rozhnova & Christiaan H. Dorp & Patricia Bruijning-Verhagen & Martin C. J. Bootsma & Janneke H. H. M. Wijgert & Marc J. M. Bonten & Mirjam E. Kretzschmar, 2021. "Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
- Peter Reinhard Hansen, 2022.
"Relative contagiousness of emerging virus variants: An analysis of the Alpha, Delta, and Omicron SARS-CoV-2 variants [Increased risk of hospitalisation associated with infection with SARS-CoV-2 lin,"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 739-761.
- Peter Reinhard Hansen, 2021. "Relative Contagiousness of Emerging Virus Variants: An Analysis of the Alpha, Delta, and Omicron SARS-CoV-2 Variants," Papers 2110.00533, arXiv.org, revised Jan 2022.
- Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
- Toulis, Panos, 2021. "Estimation of Covid-19 prevalence from serology tests: A partial identification approach," Journal of Econometrics, Elsevier, vol. 220(1), pages 193-213.
- João Viana & Christiaan H. Dorp & Ana Nunes & Manuel C. Gomes & Michiel Boven & Mirjam E. Kretzschmar & Marc Veldhoen & Ganna Rozhnova, 2021. "Controlling the pandemic during the SARS-CoV-2 vaccination rollout," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
- Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021.
"Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs,"
CESifo Working Paper Series
8977, CESifo.
- Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 2021-09, FEDEA.
- Fernández-Villaverde, Jesús & Arias, Jonas & Rubio-RamÃrez, Juan Francisco & Shin, Minchul, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," CEPR Discussion Papers 15951, C.E.P.R. Discussion Papers.
- Jonas E. Arias & Jesús Fernández-Villaverde & Juan Rubio Ramírez & Minchul Shin, 2021. "The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes," NBER Working Papers 28617, National Bureau of Economic Research, Inc.
- Hartl, Tobias, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242380, Verein für Socialpolitik / German Economic Association.
- Tobias Hartl, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," Papers 2102.10067, arXiv.org.
- Difang Huang & Ying Liang & Boyao Wu & Yanyi Ye, 2024. "Estimating the Impact of Social Distance Policy in Mitigating COVID-19 Spread with Factor-Based Imputation Approach," Papers 2405.12180, arXiv.org.
- Fernández-Villaverde, Jesús & Jones, Charles I., 2022.
"Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities,"
Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
- Fernández-Villaverde, Jesús & Jones, Chad, 2020. "Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities," CEPR Discussion Papers 14711, C.E.P.R. Discussion Papers.
- Jesús Fernández-Villaverde & Charles I. Jones, 2020. "Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities," NBER Working Papers 27128, National Bureau of Economic Research, Inc.
- Daniel L. Millimet & Christopher F. Parmeter, 2022.
"COVID‐19 severity: A new approach to quantifying global cases and deaths,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
- Millimet, Daniel L. & Parmeter, Christopher F., 2021. "COVID-19 Severity: A New Approach to Quantifying Global Cases and Deaths," IZA Discussion Papers 14116, Institute of Labor Economics (IZA).
- Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023.
"The spread of COVID-19 in London: Network effects and optimal lockdowns,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
- Julliard, Christian & Shi, Ran & Yuan, Kathy, 2020. "The spread of COVID-19 in London: network effects and optimal lockdowns," LSE Research Online Documents on Economics 118864, London School of Economics and Political Science, LSE Library.
- Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: network effects and optimal lockdowns," LSE Research Online Documents on Economics 118825, London School of Economics and Political Science, LSE Library.
- Cem Cakmakli & Yasin Simsek, 2023. "Bridging the Covid-19 Data and the Epidemiological Model using Time-Varying Parameter SIRD Model," Papers 2301.13692, arXiv.org.
- Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
- M. Hashem Pesaran & Cynthia Fan Yang, 2022.
"Matching theory and evidence on Covid‐19 using a stochastic network SIR model,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
- Pesaran, M. H. & Yang, C. F., 2020. "Matching Theory and Evidence on Covid-19 using a Stochastic Network SIR Model," Cambridge Working Papers in Economics 20102, Faculty of Economics, University of Cambridge.
- M. Hashem Pesaran & Cynthia Fan Yang, 2020. "Matching Theory and Evidence on Covid-19 Using a Stochastic Network SIR Model," CESifo Working Paper Series 8695, CESifo.
- M. Hashem Pesaran & Cynthia Fan Yang, 2021. "Matching Theory and Evidence on Covid-19 using a Stochastic Network SIR Model," Papers 2109.00321, arXiv.org, revised Jan 2022.
- Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
- Chaohua Dong & Jiti Gao & Oliver Linton & Bin peng, 2020.
"On Time Trend of COVID-19: A Panel Data Study,"
Monash Econometrics and Business Statistics Working Papers
22/20, Monash University, Department of Econometrics and Business Statistics.
- Chaohua Dong & Jiti Gao & Oliver Linton & Bin Peng, 2020. "On the Time Trend of COVID-19: A Panel Data Study," Papers 2006.11060, arXiv.org, revised Jun 2020.
- Dong, C. & Gao, J. & Linton, O. & Peng, B., 2020. "On Time Trend of COVID-19: A Panel Data Study," Cambridge Working Papers in Economics 2065, Faculty of Economics, University of Cambridge.
- Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021.
"Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
- Ali Hortaçsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19," NBER Working Papers 27028, National Bureau of Economic Research, Inc.
- Ali Hortacsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19," CeMMAP working papers CWP21/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
- Filip Obradovi'c, 2022. "Measuring Diagnostic Test Performance Using Imperfect Reference Tests: A Partial Identification Approach," Papers 2204.00180, arXiv.org, revised Aug 2024.
- Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
- Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
- Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
More about this item
Keywords
COVID-19; Bayesian Hamiltonian Monte Carlo; NPI; vaccines; booster; variants of concern; Omicron;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:444-466.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.