IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i2p495-501..html
   My bibliography  Save this article

Uniformly minimum variance conditionally unbiased estimation in multi-arm multi-stage clinical trials

Author

Listed:
  • Nigel Stallard
  • Peter K Kimani

Abstract

SUMMARYMulti-arm multi-stage clinical trials compare several experimental treatments with a control treatment, with poorly performing treatments dropped at interim analyses. This leads to inferential challenges, including the construction of unbiased treatment effect estimators. A number of estimators which are unbiased conditional on treatment selection have been proposed, but are specific to certain selection rules, may ignore the comparison to the control and are not all minimum variance. We obtain estimators for treatment effects compared to the control that are uniformly minimum variance unbiased conditional on selection with any specified rule or stopping for futility.

Suggested Citation

  • Nigel Stallard & Peter K Kimani, 2018. "Uniformly minimum variance conditionally unbiased estimation in multi-arm multi-stage clinical trials," Biometrika, Biometrika Trust, vol. 105(2), pages 495-501.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:495-501.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Magirr & T. Jaki & J. Whitehead, 2012. "A generalized Dunnett test for multi-arm multi-stage clinical studies with treatment selection," Biometrika, Biometrika Trust, vol. 99(2), pages 494-501.
    2. Bradley Efron, 2014. "Estimation and Accuracy After Model Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 991-1007, September.
    3. Cohen, Arthur & Sackrowitz, Harold B., 1989. "Two stage conditionally unbiased estimators of the selected mean," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 273-278, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    2. Kumar, Somesh & Mahapatra, Ajaya Kumar & Vellaisamy, P., 2009. "Reliability estimation of the selected exponential populations," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1372-1377, June.
    3. John Copas & Shinto Eguchi, 2020. "Strong model dependence in statistical analysis: goodness of fit is not enough for model choice," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 329-352, April.
    4. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    5. Subhadeep & Mukhopadhyay, 2022. "Modelplasticity and Abductive Decision Making," Papers 2203.03040, arXiv.org, revised Mar 2023.
    6. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    7. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    8. Pranab Ghosh & Lingyun Liu & P. Senchaudhuri & Ping Gao & Cyrus Mehta, 2017. "Design and monitoring of multi‐arm multi‐stage clinical trials," Biometrics, The International Biometric Society, vol. 73(4), pages 1289-1299, December.
    9. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583, arXiv.org, revised Oct 2019.
    10. Long Mark C. & Rooklyn Jordan, 2024. "Regression(s) discontinuity: Using bootstrap aggregation to yield estimates of RD treatment effects," Journal of Causal Inference, De Gruyter, vol. 12(1), pages 1-21, January.
    11. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    12. Arlen Dean & Amirhossein Meisami & Henry Lam & Mark P. Van Oyen & Christopher Stromblad & Nick Kastango, 2022. "Quantile regression forests for individualized surgery scheduling," Health Care Management Science, Springer, vol. 25(4), pages 682-709, December.
    13. Céline Cunen & Nils Lid Hjort, 2020. "Confidence Distributions for FIC Scores," Econometrics, MDPI, vol. 8(3), pages 1-28, July.
    14. Jonathan Legare & Ping Yao & Victor S. Y. Lo, 2023. "A case for conducting business-to-business experiments with multi-arm multi-stage adaptive designs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 490-502, September.
    15. Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
    16. David J. Olive, 2018. "Applications of hyperellipsoidal prediction regions," Statistical Papers, Springer, vol. 59(3), pages 913-931, September.
    17. Daniel Jacob, 2021. "Variable Selection for Causal Inference via Outcome-Adaptive Random Forest," Papers 2109.04154, arXiv.org.
    18. Deshpande, Jayant V. & Muhammad Fareed, T. P., 1995. "A note on conditionally unbiased estimation after selection," Statistics & Probability Letters, Elsevier, vol. 22(1), pages 17-23, January.
    19. Fang Fang & Jiwei Zhao & S. Ejaz Ahmed & Annie Qu, 2021. "A weak‐signal‐assisted procedure for variable selection and statistical inference with an informative subsample," Biometrics, The International Biometric Society, vol. 77(3), pages 996-1010, September.
    20. Wu, Suofei & Hannig, Jan & Lee, Thomas C.M., 2022. "Uncertainty quantification for honest regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:495-501.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.