IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3100-d900511.html
   My bibliography  Save this article

On the Robustness and Sensitivity of Several Nonparametric Estimators via the Influence Curve Measure: A Brief Study

Author

Listed:
  • Indranil Ghosh

    (Department of Mathematics and Statistics, University of North Carolina, Wilmington, NC 28403, USA)

  • Kathleen Fleming

    (Department of Mathematics and Statistics, University of North Carolina, Wilmington, NC 28403, USA)

Abstract

The use of influence curve as a measure of sensitivity is not new in the literature but has not been properly explored to the best of our knowledge. In particular, the mathematical derivation of the influence function for several popular nonparametric estimators (such as trimmed mean, α -winsorized mean, Pearson product moment correlation coefficient etc. among notable ones) is not given in adequate detail. Moreover, the summary of the final expressions given in some sporadic cases does not appear to be correct. In this article, we aim to examine and summarize the derivation of the influence curve for various well-known estimators for estimating the location of a population, many of which are considered in the nonparametric paradigm.

Suggested Citation

  • Indranil Ghosh & Kathleen Fleming, 2022. "On the Robustness and Sensitivity of Several Nonparametric Estimators via the Influence Curve Measure: A Brief Study," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3100-:d:900511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingxin Wu & Yijun Zuo, 2008. "Trimmed and winsorized standard deviations based on a scaled deviation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(4), pages 319-335.
    2. Hongtu Zhu & Joseph G. Ibrahim & Niansheng Tang, 2011. "Bayesian influence analysis: a geometric approach," Biometrika, Biometrika Trust, vol. 98(2), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    2. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    3. Yijun Zuo, 2021. "Robustness of the deepest projection regression functional," Statistical Papers, Springer, vol. 62(3), pages 1167-1193, June.
    4. Ming Ouyang & Xinyuan Song, 2020. "Bayesian Local Influence of Generalized Failure Time Models with Latent Variables and Multivariate Censored Data," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 298-316, July.
    5. Tang, Niansheng & Wu, Ying & Chen, Dan, 2018. "Semiparametric Bayesian analysis of transformation linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 225-240.
    6. Yuanyuan Ju & Yan Yang & Mingxing Hu & Lin Dai & Liucang Wu, 2022. "Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
    7. Yijun Zuo, 2020. "Depth Induced Regression Medians and Uniqueness," Stats, MDPI, vol. 3(2), pages 1-13, April.
    8. Tsionas, Mike G., 2018. "Bayesian local influence analysis: With an application to stochastic frontiers," Economics Letters, Elsevier, vol. 165(C), pages 54-57.
    9. Ouyang, Ming & Yan, Xiaodong & Chen, Ji & Tang, Niansheng & Song, Xinyuan, 2017. "Bayesian local influence of semiparametric structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 102-115.
    10. Abhijoy Saha & Sebastian Kurtek, 2019. "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 104-143, February.
    11. Tang, Nian-Sheng & Duan, Xing-De, 2014. "Bayesian influence analysis of generalized partial linear mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 86-99.
    12. Niansheng Tang & Sy-Miin Chow & Joseph G. Ibrahim & Hongtu Zhu, 2017. "Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 875-903, December.
    13. Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3100-:d:900511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.