IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i1p241-247.html
   My bibliography  Save this article

A note on path-based variable selection in the penalized proportional hazards model

Author

Listed:
  • Hui Zou

Abstract

We propose an efficient and adaptive shrinkage method for variable selection in the Cox model. The method constructs a piecewise-linear regularization path connecting the maximum partial likelihood estimator and the origin. Then a model is selected along the path. We show that the constructed path is adaptive in the sense that, with a proper choice of regularization parameter, the fitted model works as well as if the true underlying submodel were given in advance. A modified algorithm of the least-angle-regression type efficiently computes the entire regularization path of the new estimator. Furthermore, we show that, with a proper choice of shrinkage parameter, the method is consistent in variable selection and efficient in estimation. Simulation shows that the new method tends to outperform the lasso and the smoothly-clipped-absolute-deviation estimators with moderate samples. We apply the methodology to data concerning nursing homes. Copyright 2008, Oxford University Press.

Suggested Citation

  • Hui Zou, 2008. "A note on path-based variable selection in the penalized proportional hazards model," Biometrika, Biometrika Trust, vol. 95(1), pages 241-247.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:241-247
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm083
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    2. Yichao Wu, 2011. "An ordinary differential equation-based solution path algorithm," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 185-199.
    3. Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
    4. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    5. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    6. Shan Luo & Jinfeng Xu & Zehua Chen, 2015. "Extended Bayesian information criterion in the Cox model with a high-dimensional feature space," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 287-311, April.
    7. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
    8. Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
    9. Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
    10. Anestis Antoniadis & Piotr Fryzlewicz & Frédérique Letué, 2010. "The Dantzig Selector in Cox's Proportional Hazards Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 531-552, December.
    11. Xifen Huang & Chaosong Xiong & Tao Jiang & Junfeng Lu & Jinfeng Xu, 2022. "Efficient Estimation and Inference in the Proportional Odds Model for Survival Data," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    12. Yingli Pan & Wen Cai & Zhan Liu, 2022. "Inference for non-probability samples under high-dimensional covariate-adjusted superpopulation model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 955-979, October.
    13. Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:241-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.