IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i2p619-633.html
   My bibliography  Save this article

Response-adaptive designs for clinical trials: Simultaneous learning from multiple patients

Author

Listed:
  • Ahuja, Vishal
  • Birge, John R.

Abstract

Clinical trials have traditionally followed a fixed design, in which randomization probabilities of patients to various treatments remains fixed throughout the trial and specified in the protocol. The primary goal of this static design is to learn about the efficacy of treatments. Response-adaptive designs, on the other hand, allow clinicians to use the learning about treatment effectiveness to dynamically adjust randomization probabilities of patients to various treatments as the trial progresses. An ideal adaptive design is one where patients are treated as effectively as possible without sacrificing the potential learning or compromising the integrity of the trial. We propose such a design, termed Jointly Adaptive, that uses forward-looking algorithms to fully exploit learning from multiple patients simultaneously. Compared to the best existing implementable adaptive design that employs a multiarmed bandit framework in a setting where multiple patients arrive sequentially, we show that our proposed design improves health outcomes of patients in the trial by up to 8.6 percent, in expectation, under a set of considered scenarios. Further, we demonstrate our design’s effectiveness using data from a recently conducted stent trial. This paper also adds to the general understanding of such models by showing the value and nature of improvements over heuristic solutions for problems with short delays in observing patient outcomes. We do this by showing the relative performance of these schemes for maximum expected patient health and maximum expected learning objectives, and by demonstrating the value of a restricted-optimal-policy approximation in a practical example.

Suggested Citation

  • Ahuja, Vishal & Birge, John R., 2016. "Response-adaptive designs for clinical trials: Simultaneous learning from multiple patients," European Journal of Operational Research, Elsevier, vol. 248(2), pages 619-633.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:619-633
    DOI: 10.1016/j.ejor.2015.06.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715006311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.06.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    2. Yossi Aviv & Amit Pazgal, 2005. "A Partially Observed Markov Decision Process for Dynamic Pricing," Management Science, INFORMS, vol. 51(9), pages 1400-1416, September.
    3. Yi Cheng & Donald A. Berry, 2007. "Optimal adaptive randomized designs for clinical trials," Biometrika, Biometrika Trust, vol. 94(3), pages 673-689.
    4. Vivek F. Farias & Benjamin Van Roy, 2010. "Dynamic Pricing with a Prior on Market Response," Operations Research, INFORMS, vol. 58(1), pages 16-29, February.
    5. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    6. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    7. Michael N. Katehakis & Arthur F. Veinott, 1987. "The Multi-Armed Bandit Problem: Decomposition and Computation," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 262-268, May.
    8. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Chick & Martin Forster & Paolo Pertile, 2017. "A Bayesian decision theoretic model of sequential experimentation with delayed response," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1439-1462, November.
    2. Amir Ali Nasrollahzadeh & Amin Khademi, 2022. "Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1176-1190, March.
    3. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    4. Ninh, Anh & Bao, Yunhong & McGibney, Daniel & Nguyen, Tuan, 2024. "Clinical site selection problems with probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 316(2), pages 779-791.
    5. Andres Alban & Stephen E. Chick & Martin Forster, 2023. "Value-Based Clinical Trials: Selecting Recruitment Rates and Trial Lengths in Different Regulatory Contexts," Management Science, INFORMS, vol. 69(6), pages 3516-3535, June.
    6. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    7. Diana M. Negoescu & Kostas Bimpikis & Margaret L. Brandeau & Dan A. Iancu, 2018. "Dynamic Learning of Patient Response Types: An Application to Treating Chronic Diseases," Management Science, INFORMS, vol. 64(8), pages 3469-3488, August.
    8. Panos Kouvelis & Joseph Milner & Zhili Tian, 2017. "Clinical Trials for New Drug Development: Optimal Investment and Application," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 437-452, July.
    9. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    10. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    11. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.
    2. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.
    3. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.
    4. Yonatan Gur & Gregory Macnamara & Ilan Morgenstern & Daniela Saban, 2019. "Information Disclosure and Promotion Policy Design for Platforms," Papers 1911.09256, arXiv.org, revised Dec 2022.
    5. Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
    6. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    7. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    8. J. Michael Harrison & Nur Sunar, 2015. "Investment Timing with Incomplete Information and Multiple Means of Learning," Operations Research, INFORMS, vol. 63(2), pages 442-457, April.
    9. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    10. N. Bora Keskin & John R. Birge, 2019. "Dynamic Selling Mechanisms for Product Differentiation and Learning," Operations Research, INFORMS, vol. 67(4), pages 1069-1089, July.
    11. Yuqing Zhang & Neil Walton, 2019. "Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches," Papers 1907.05381, arXiv.org.
    12. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    13. Ruben Geer & Arnoud V. Boer & Christopher Bayliss & Christine S. M. Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbjørn Nilsen Ris, 2019. "Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 185-203, June.
    14. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    15. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    16. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    17. Maxime C. Cohen & Georgia Perakis & Robert S. Pindyck, 2015. "Pricing with Limited Knowledge of Demand," NBER Working Papers 21679, National Bureau of Economic Research, Inc.
    18. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    19. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    20. Yevgeny Tsodikovich & Ehud Lehrer, 2019. "Stochastic revision opportunities in Markov decision problems," Annals of Operations Research, Springer, vol. 279(1), pages 251-270, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:619-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.