IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i3p837-851..html
   My bibliography  Save this article

Wavelet spectra for multivariate point processes
[The spectral analysis of point processes]

Author

Listed:
  • E A K Cohen
  • A J Gibberd

Abstract

SummaryWavelets provide the flexibility for analysing stochastic processes at different scales. In this article we apply them to multivariate point processes as a means of detecting and analysing unknown nonstationarity, both within and across component processes. To provide statistical tractability, a temporally smoothed wavelet periodogram is developed and shown to be equivalent to a multi-wavelet periodogram. Under a stationarity assumption, the distribution of the temporally smoothed wavelet periodogram is demonstrated to be asymptotically Wishart, with the centrality matrix and degrees of freedom readily computable from the multi-wavelet formulation. Distributional results extend to wavelet coherence, a time-scale measure of inter-process correlation. This statistical framework is used to construct a test for stationarity in multivariate point processes. The methods are applied to neural spike-train data, where it is shown to detect and characterize time-varying dependency patterns.

Suggested Citation

  • E A K Cohen & A J Gibberd, 2022. "Wavelet spectra for multivariate point processes [The spectral analysis of point processes]," Biometrika, Biometrika Trust, vol. 109(3), pages 837-851.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:3:p:837-851.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab054
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    2. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," LIDAM Reprints ISBA 2016026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
    4. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    5. Roueff, Francois & von Sachs, Rainer, 2019. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Reprints ISBA 2019012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.
    7. Rainer Von Sachs & Michael H. Neumann, 2000. "A Wavelet‐Based Test for Stationarity," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(5), pages 597-613, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    3. Clark, Andrew, 2022. "Causality in the aluminum market," Journal of Commodity Markets, Elsevier, vol. 27(C).
    4. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    5. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    6. Simon Clinet & Yoann Potiron, 2016. "Statistical inference for the doubly stochastic self-exciting process," Papers 1607.05831, arXiv.org, revised Jun 2017.
    7. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    8. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    9. de Menezes, Lilian M. & Houllier, Melanie A. & Tamvakis, Michael, 2016. "Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices," Energy Policy, Elsevier, vol. 88(C), pages 613-627.
    10. Antonis A. Michis, 2021. "Wavelet Multidimensional Scaling Analysis of European Economic Sentiment Indicators," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 443-480, October.
    11. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    12. Roueff, Francois & von Sachs, Rainer, 2017. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2017005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
    14. Xuefeng Gao & Xiang Zhou & Lingjiong Zhu, 2017. "Transform Analysis for Hawkes Processes with Applications in Dark Pool Trading," Papers 1710.01452, arXiv.org.
    15. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    16. Tata Subba Rao & Granville Tunnicliffe Wilson & Alessandro Cardinali & Guy P. Nason, 2017. "Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 151-174, March.
    17. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    18. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    19. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    20. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:3:p:837-851.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.