IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i2p351-367..html
   My bibliography  Save this article

Semi-exact control functionals from Sard’s method
[Zero-variance principle for Monte Carlo algorithms]

Author

Listed:
  • L F South
  • T Karvonen
  • C Nemeth
  • M Girolami
  • C J Oates

Abstract

SummaryA novel control variate technique is proposed for the post-processing of Markov chain Monte Carlo output, based on both Stein’s method and an approach to numerical integration due to Sard. The resulting estimators of posterior expected quantities of interest are proven to be polynomially exact in the Gaussian context, while empirical results suggest that the estimators approximate a Gaussian cubature method near the Bernstein–von Mises limit. The main theoretical result establishes a bias-correction property in settings where the Markov chain does not leave the posterior invariant. Empirical results across a selection of Bayesian inference tasks are presented.

Suggested Citation

  • L F South & T Karvonen & C Nemeth & M Girolami & C J Oates, 2022. "Semi-exact control functionals from Sard’s method [Zero-variance principle for Monte Carlo algorithms]," Biometrika, Biometrika Trust, vol. 109(2), pages 351-367.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:351-367.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    2. Chris J. Oates & Theodore Papamarkou & Mark Girolami, 2016. "The Controlled Thermodynamic Integral for Bayesian Model Evidence Evaluation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 634-645, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belomestny, Denis & Goldman, Artur & Naumov, Alexey & Samsonov, Sergey, 2024. "Theoretical guarantees for neural control variates in MCMC," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 382-405.
    2. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    3. Marc Sabate Vidales & David Siska & Lukasz Szpruch, 2018. "Unbiased deep solvers for linear parametric PDEs," Papers 1810.05094, arXiv.org, revised Jan 2022.
    4. Marco Grzegorczyk & Andrej Aderhold & Dirk Husmeier, 2017. "Targeting Bayes factors with direct-path non-equilibrium thermodynamic integration," Computational Statistics, Springer, vol. 32(2), pages 717-761, June.
    5. Chamakh, Linda & Szabo, Zoltan, 2021. "Kernel minimum divergence portfolios," LSE Research Online Documents on Economics 115723, London School of Economics and Political Science, LSE Library.
    6. Marina Riabiz & Wilson Ye Chen & Jon Cockayne & Pawel Swietach & Steven A. Niederer & Lester Mackey & Chris. J. Oates, 2022. "Optimal thinning of MCMC output," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1059-1081, September.
    7. Richard A. Davis & Thiago do Rêgo Sousa & Claudia Klüppelberg, 2021. "Indirect inference for time series using the empirical characteristic function and control variates," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 653-684, September.
    8. Leluc, Rémi & Portier, François & Segers, Johan & Zhuman, Aigerim, 2022. "A Quadrature Rule combining Control Variates and Adaptive Importance Sampling," LIDAM Discussion Papers ISBA 2022018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
    10. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    11. Leluc, Rémi & Dieuleveut, Aymeric & Portier, François & Segers, Johan & Zhuman, Aigerim, 2024. "Sliced-Wasserstein Estimation with Spherical Harmonics as Control Variates," LIDAM Discussion Papers ISBA 2024003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Jeremy Heng & Arnaud Doucet & Yvo Pokern, 2021. "Gibbs flow for approximate transport with applications to Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 156-187, February.
    13. Linda Chamakh & Zoltan Szabo, 2021. "Keep it Tighter -- A Story on Analytical Mean Embeddings," Papers 2110.09516, arXiv.org, revised Nov 2024.
    14. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:351-367.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.