IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2024003.html
   My bibliography  Save this paper

Sliced-Wasserstein Estimation with Spherical Harmonics as Control Variates

Author

Listed:
  • Leluc, Rémi
  • Dieuleveut, Aymeric
  • Portier, François
  • Segers, Johan

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Zhuman, Aigerim

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

The Sliced-Wasserstein (SW) distance between probability measures is defined as the average of the Wasserstein distances resulting for the associated one-dimensional projections. As a consequence, the SW distance can be written as an integral with respect to the uniform measure on the sphere and the Monte Carlo framework can be employed for calculating the SW distance. Spherical harmonics are polynomials on the sphere that form an orthonormal basis of the set of square-integrable functions on the sphere. Putting these two facts together, a new Monte Carlo method, hereby referred to as Spherical Harmonics Control Variates (SHCV), is proposed for approximating the SW distance using spherical harmonics as control variates. The resulting approach is shown to have good theoretical properties, e.g., a no-error property for Gaussian measures under a certain form of linear dependency between the variables. Moreover, an improved rate of convergence, compared to Monte Carlo, is established for general measures. The convergence analysis relies on the Lipschitz property associated to the SW integrand. Several numerical experiments demonstrate the superior performance of SHCV against state-of-the-art methods for SW distance computation.

Suggested Citation

  • Leluc, Rémi & Dieuleveut, Aymeric & Portier, François & Segers, Johan & Zhuman, Aigerim, 2024. "Sliced-Wasserstein Estimation with Spherical Harmonics as Control Variates," LIDAM Discussion Papers ISBA 2024003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2024003
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A284675/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
    2. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Portier, Francois & Segers, Johan, 2019. "Monte Carlo integration with a growing number of control variates," LIDAM Reprints ISBA 2019035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard A. Davis & Thiago do Rêgo Sousa & Claudia Klüppelberg, 2021. "Indirect inference for time series using the empirical characteristic function and control variates," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 653-684, September.
    2. Leluc, Rémi & Portier, François & Segers, Johan & Zhuman, Aigerim, 2022. "A Quadrature Rule combining Control Variates and Adaptive Importance Sampling," LIDAM Discussion Papers ISBA 2022018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Belomestny, Denis & Goldman, Artur & Naumov, Alexey & Samsonov, Sergey, 2024. "Theoretical guarantees for neural control variates in MCMC," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 382-405.
    4. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    5. Marc Sabate Vidales & David Siska & Lukasz Szpruch, 2018. "Unbiased deep solvers for linear parametric PDEs," Papers 1810.05094, arXiv.org, revised Jan 2022.
    6. Chamakh, Linda & Szabo, Zoltan, 2021. "Keep it tighter -- A story on analytical mean embeddings," LSE Research Online Documents on Economics 115723, London School of Economics and Political Science, LSE Library.
    7. Jérôme Lelong & Zineb El Filali Ech-Chafiq & Adil Reghai, 2020. "Automatic Control Variates for Option Pricing using Neural Networks," Working Papers hal-02891798, HAL.
    8. Leluc, Rémi & Portier, François & Zhuman, Aigerim & Segers, Johan, 2023. "Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence," LIDAM Discussion Papers ISBA 2023019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Marina Riabiz & Wilson Ye Chen & Jon Cockayne & Pawel Swietach & Steven A. Niederer & Lester Mackey & Chris. J. Oates, 2022. "Optimal thinning of MCMC output," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1059-1081, September.
    10. Jérôme Lelong & Zineb El Filali Ech-Chafiq & Adil Reghai, 2021. "Automatic Control Variates for Option Pricing using Neural Networks," Post-Print hal-02891798, HAL.
    11. L F South & T Karvonen & C Nemeth & M Girolami & C J Oates, 2022. "Semi-exact control functionals from Sard’s method [Zero-variance principle for Monte Carlo algorithms]," Biometrika, Biometrika Trust, vol. 109(2), pages 351-367.
    12. Plassier, Vincent & Portier, François & Segers, Johan, 2020. "Risk bounds when learning infinitely many response functions by ordinary linear regression," LIDAM Discussion Papers ISBA 2020019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
    14. Linda Chamakh & Zoltan Szabo, 2021. "Keep it Tighter -- A Story on Analytical Mean Embeddings," Papers 2110.09516, arXiv.org, revised Nov 2024.
    15. Fengpei Li & Haoxian Chen & Jiahe Lin & Arkin Gupta & Xiaowei Tan & Gang Xu & Yuriy Nevmyvaka & Agostino Capponi & Henry Lam, 2024. "Prediction-Enhanced Monte Carlo: A Machine Learning View on Control Variate," Papers 2412.11257, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2024003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.