Don’t guess what’s true: choose what’s optimal. A probability transducer for machine-learning classifiers
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/vct9y_v1
Download full text from publisher
References listed on IDEAS
- Porta Mana, PierGianLuca, 2019. "A relation between log-likelihood and cross-validation log-scores," OSF Preprints k8mj3, Center for Open Science.
- Porta Mana, PierGianLuca, 2019. "A relation between log-likelihood and cross-validation log-scores," OSF Preprints k8mj3_v1, Center for Open Science.
- David B. Dunson & Natesh Pillai & Ju‐Hyun Park, 2007. "Bayesian density regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 163-183, April.
- E Fong & C C Holmes, 2020. "On the marginal likelihood and cross-validation," Biometrika, Biometrika Trust, vol. 107(2), pages 489-496.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Porta Mana, PierGianLuca & Rye, Ingrid & Vik, Alexandra & Kociński, Marek & Lundervold, Astri Johansen & Lundervold, Arvid & Lundervold, Alexander Selvikvåg, 2025. "Personalized prognosis & treatment using an optimal predictor machine: An example study on conversion from Mild Cognitive Impairment to Alzheimer's Disease," OSF Preprints 8nr56_v2, Center for Open Science.
- Porta Mana, PierGianLuca & Rye, Ingrid & Vik, Alexandra & Kociński, Marek & Lundervold, Astri Johansen & Lundervold, Arvid & Lundervold, Alexander Selvikvåg, 2023. "Personalized prognosis & treatment using an optimal predictor machine: An example study on conversion from Mild Cognitive Impairment to Alzheimer's Disease," OSF Preprints 8nr56_v1, Center for Open Science.
- Dyrland, Kjetil & Lundervold, Alexander Selvikvåg & Porta Mana, PierGianLuca, 2022. "A probability transducer and decision-theoretic augmentation for machine-learning classifiers," OSF Preprints vct9y, Center for Open Science.
- Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
- A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
- Antonio Canale & Bruno Scarpa, 2016. "Bayesian nonparametric location–scale–shape mixtures," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 113-130, March.
- Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
- Glen McGee & Ander Wilson & Thomas F. Webster & Brent A. Coull, 2023. "Bayesian multiple index models for environmental mixtures," Biometrics, The International Biometric Society, vol. 79(1), pages 462-474, March.
- Hübler, Olaf, 2017. "Health and Body Mass Index: No Simple Relationship," IZA Discussion Papers 10620, Institute of Labor Economics (IZA).
- Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
- Igari, Ryosuke & Hoshino, Takahiro, 2018.
"A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing,"
Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
- Ryosuke Igari & Takahiro Hoshino, 2017. "Bayesian Data Combination Approach for Repeated Durations under Unobserved Missing Indicators: Application to Interpurchase-Timing in Marketing," Keio-IES Discussion Paper Series 2017-015, Institute for Economics Studies, Keio University.
- Tsionas, Mike G., 2023. "Combining data envelopment analysis and stochastic frontiers via a LASSO prior," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1158-1166.
- Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
- Xu Chen & Surya T. Tokdar, 2021. "Joint quantile regression for spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 826-852, September.
- Sun, Peng & Kim, Inyoung & Lee, Ki-Ahm, 2018. "Dual-semiparametric regression using weighted Dirichlet process mixture," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 162-181.
- Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023.
"Bayesian Artificial Neural Networks for frontier efficiency analysis,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2023. "Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP012023, School of Economics, University of Queensland, Australia.
- Valentin Zelenyuk & Valentyn Panchenko, 2023. "Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP022023, School of Economics, University of Queensland, Australia.
- Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
- Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2007. "Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures," Working Paper Series 211, Sveriges Riksbank (Central Bank of Sweden).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:vct9y_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.