IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v97y2015i2p568-588..html
   My bibliography  Save this article

Agricultural Production under Climate Change: The Potential Impacts of Shifting Regional Water Balances in the United States

Author

Listed:
  • Elizabeth Marshall
  • Marcel Aillery
  • Scott Malcolm
  • Ryan Williams

Abstract

General circulation models predict significant and accelerating changes in local patterns of precipitation and temperature during the twenty-first century. Agriculture's vulnerability to climate change will depend on both the biophysical impacts of climate change on crop yields and on the agricultural system's ability to adapt to changing production conditions. Shifts in the extent and distribution of irrigated and dryland production are a potentially important adaptation response. Farmer flexibility to adapt may be limited, however, by changes in the availability of irrigation water under future climate conditions. This study uses a suite of models to explore the biophysical and economic impacts of climate change on U.S. fieldcrop production under several potential future climate projections, and to explore the potential limits and opportunities for adaptation arising from shifting regional water balances. The study findings suggest that, while irrigation shortages attributable to climate change have varying effects on cropland use, the aggregate impacts on national production are small relative to the direct biophysical impacts of climate change on yield.

Suggested Citation

  • Elizabeth Marshall & Marcel Aillery & Scott Malcolm & Ryan Williams, 2015. "Agricultural Production under Climate Change: The Potential Impacts of Shifting Regional Water Balances in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 568-588.
  • Handle: RePEc:oup:ajagec:v:97:y:2015:i:2:p:568-588.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aau122
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Njuki, E. & Bravo-Ureta, B., 2018. "Accounting for the Impacts of Changing Configurations in Temperature and Precipitation on U.S. Agricultural Productivity," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277140, International Association of Agricultural Economists.
    2. Delphine Barberis & Ines Chiadmi & Pierre Humblot & Pierre-Alain Jayet & Anna Lungarska & Maxime Ollier, 2021. "Climate Change and Irrigation Water: Should the North/South Hierarchy of Impacts on Agricultural Systems Be Reconsidered? [Changement climatique et eau d'irrigation : La hiƩrarchie Nord/Sud des imp," Post-Print hal-03152273, HAL.
    3. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    4. Viktoriya Galushko & Samuel Gamtessa, 2022. "Impact of Climate Change on Productivity and Technical Efficiency in Canadian Crop Production," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    5. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    6. Bigelow, Daniel P. & Zhang, Hongliang, 2018. "Supplemental irrigation water rights and climate change adaptation," Ecological Economics, Elsevier, vol. 154(C), pages 156-167.
    7. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    8. Kayla A. Cotterman & Anthony D. Kendall & Bruno Basso & David W. Hyndman, 2018. "Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer," Climatic Change, Springer, vol. 146(1), pages 187-200, January.
    9. Haqiqi, Iman & Taheripour, Farzad & van der Mensbrugghe, Dominique, 2016. "Climate Change, Food Production, and Welfare," Conference papers 332785, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:97:y:2015:i:2:p:568-588.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.