IDEAS home Printed from https://ideas.repec.org/a/ora/journl/v4y2009i1p897-901.html
   My bibliography  Save this article

An Adaptative Evolutionary Model Of Financial Investors

Author

Listed:
  • Boldea Bogdan Ion

    (West University of Timişoara, Faculty of Economy and Business Administration)

  • Boldea Costin-Radu

    (University of Craiova, Faculty of Mathematics and Computer Sciences)

  • Stanculescu Mircea

    (“Spiru Haret” University, Faculty of Management and Accounting)

Abstract

The main purpose of the paper is to determine a general behavior of a multi-agent model capable of describing the process of deliberation of an investors group witch may repeatedly decide whether to buy or sell an asset. Each adaptive agent was modeled as

Suggested Citation

  • Boldea Bogdan Ion & Boldea Costin-Radu & Stanculescu Mircea, 2009. "An Adaptative Evolutionary Model Of Financial Investors," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 4(1), pages 897-901, May.
  • Handle: RePEc:ora:journl:v:4:y:2009:i:1:p:897-901
    as

    Download full text from publisher

    File URL: http://steconomice.uoradea.ro/anale/volume/2009/v4-management-and-marketing/183.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    2. Riechmann, Thomas, 1998. "Genetic Algorithms and Economic Evolution," Hannover Economic Papers (HEP) dp-219, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    4. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    5. Jean-Philippe Bouchaud, 2002. "An introduction to statistical finance," Science & Finance (CFM) working paper archive 313238, Science & Finance, Capital Fund Management.
    6. Bouchaud, Jean-Philippe, 2002. "An introduction to statistical finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(1), pages 238-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    2. Omurtag, Ahmet & Sirovich, Lawrence, 2006. "Modeling a large population of traders: Mimesis and stability," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 562-576, December.
    3. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    4. Fang, Wen & Wang, Jun, 2013. "Fluctuation behaviors of financial time series by a stochastic Ising system on a Sierpinski carpet lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4055-4063.
    5. Miquel Montero, 2021. "Predator–prey model for stock market fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 29-57, January.
    6. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    7. Damien Challet & Tobias Galla, 2005. "Price return autocorrelation and predictability in agent-based models of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 569-576.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    9. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    10. Christophe Schinckus, 2011. "What can econophysics contribute to financial economics?," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 58(2), pages 147-163, June.
    11. Challet, Damien, 2008. "Inter-pattern speculation: Beyond minority, majority and $-games," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 85-100, January.
    12. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    13. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    14. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    15. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    16. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    17. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    18. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    19. Jean-Philippe Bouchaud & Damien Challet, 2016. "Why have asset price properties changed so little in 200 years," Papers 1605.00634, arXiv.org.
    20. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.

    More about this item

    Keywords

    Programming Models; Genetic algorithms; Information efficiency;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ora:journl:v:4:y:2009:i:1:p:897-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin ZMOLE (email available below). General contact details of provider: https://edirc.repec.org/data/feoraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.