IDEAS home Printed from https://ideas.repec.org/a/ora/journl/v1y2015i2p389-397.html
   My bibliography  Save this article

Analysis Of Relationship Between Risk And Financial Ratios In Case Of Romanian Small And Medium-Sized Enterprises

Author

Listed:
  • Kulcsar Edina

    (University of Oradea, Faculty of Economics)

Abstract

According to imperfect market principle, in small and medium sized enterprises’ business activity, the phenomenon of risk is always present. As a consequence of last great recession, the importance of risk management has accented. Enterprises and financial institutions handle more carefully their finances and pay more attention to their partners. The aim of present research consists in examination of relationship between risk and financial ratios. In this paper, we considered that the risk could be divided into operating risk, which is calculated by using Degree of Operating Leverage (DOL) and financial risk, expressed by Degree of Financial Leverage (DFL). The reason why we chose Romanian small and medium-sized enterprises is they are important on aspect of GDP stimulation and jobs creation. The data used for present analysis is ensured by simplified financial reports of 204 small and medium-sized enterprises registered in Bihor County between 2009 and 2012. The selected enterprises are operating in manufacturing (22,55%) and trading (77,45%) industry. The used financial ratios could be listed in four categories: liquidity, financial leverage, profitability and turnover. The used statistical methods for illustration of relationship between risk and financial ratios are: correlation analysis, multivariate linear regression, and stepwise linear regression. In case of correlation analysis, we could observed a weak relationship between these two types of leverage and financial ratios, both for manufacturing and trading firms. The result of applying multivariate regression model shows in case of manufacturing sme’s greater relation between operating risk and current, quick liquidity, receivables turnover, return on sales (ROS) and return on assets (ROA). Degree of financial leverage (DFL) could be well explained by receivables turnover, as an independent variable. In case of trading firms, operating risk is related with current and cash liquidity, receivables turnover, return on sales (ROS). Degree of financial leverage could be characterized by total debt ratio. We could find similar results with few exceptions if the stepwise regression analysis is applied. The difference between last two methods consists in levels of significance of the explanatory variables, which are more favorable in the case of last method. Overall, we could state, from the investigated three methods, the stepwise regression analysis is the most appropriate for examination of relationship between operating, financial risk and above mentioned 12 financial ratios.

Suggested Citation

  • Kulcsar Edina, 2015. "Analysis Of Relationship Between Risk And Financial Ratios In Case Of Romanian Small And Medium-Sized Enterprises," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(2), pages 389-397, December.
  • Handle: RePEc:ora:journl:v:1:y:2015:i:2:p:389-397
    as

    Download full text from publisher

    File URL: http://anale.steconomiceuoradea.ro/volume/2015/n2/046.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Botta & Luca Colombo, 2016. "Macroeconomic and Institutional Determinants of Capital Structure Decisions," DISCE - Working Papers del Dipartimento di Economia e Finanza def038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    2. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    3. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    4. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    5. Richardson, Grant & Taylor, Grantley & Lanis, Roman, 2015. "The impact of financial distress on corporate tax avoidance spanning the global financial crisis: Evidence from Australia," Economic Modelling, Elsevier, vol. 44(C), pages 44-53.
    6. Kristóf, Tamás, 2008. "A csődelőrejelzés és a nem fizetési valószínűség számításának módszertani kérdéseiről [Some methodological questions of bankruptcy prediction and probability of default estimation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 441-461.
    7. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    8. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    9. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    10. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    11. Maurice Peat, 2007. "Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
    12. Wen Su, 2021. "Default Distances Based on the CEV-KMV Model," Papers 2107.10226, arXiv.org, revised May 2022.
    13. Talam, Camilla & Kiemo, Samuel, 2024. "Interest rate risk in Kenya: The banking sector stability and fiscal risks nexus," KBA Centre for Research on Financial Markets and Policy Working Paper Series 80, Kenya Bankers Association (KBA).
    14. Amir Ghafourian Shagerdi & Ali Mahdavipour & Reza Jahanshiri Ariyan Tashakori Baghdar & Mohammad Sajjad Ghafourian Shagerdi, 2020. "Investment Efficiency and Audit Fee from the Perspective of the Role of Financial Distress," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 318-333.
    15. Meles, Antonio & Salerno, Dario & Sampagnaro, Gabriele & Verdoliva, Vincenzo & Zhang, Jianing, 2023. "The influence of green innovation on default risk: Evidence from Europe," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 692-710.
    16. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    17. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    18. Jing Zeng & Xiongyuan Wang & Kam C. Chan, 2021. "Does the value‐added tax Reform increase a firm’s collateral bank loans? Evidence from China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 29(4), pages 681-710, October.
    19. Jason J. Constable & David R. Woodliff, 1994. "Predicting Corporate Failure Using Publicly Available Information," Australian Accounting Review, CPA Australia, vol. 4(7), pages 13-27, May.
    20. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.

    More about this item

    Keywords

    risk; degree of operating leverage (DOL); degree of financial leverage (DFL); financial ratios; correlation; multivariate linear stepwise regression;
    All these keywords.

    JEL classification:

    • G3 - Financial Economics - - Corporate Finance and Governance
    • G30 - Financial Economics - - Corporate Finance and Governance - - - General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ora:journl:v:1:y:2015:i:2:p:389-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin ZMOLE (email available below). General contact details of provider: https://edirc.repec.org/data/feoraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.