IDEAS home Printed from https://ideas.repec.org/a/nbp/nbpbik/v49y2018i3p253-288.html
   My bibliography  Save this article

Prognozowanie indeksu WIG za pomocą jądrowych estymatorów funkcji regresji

Author

Listed:
  • Witold Orzeszko

    (Uniwersytet Mikołaja Kopernika, Katedra Zastosowań Informatyki i Matematyki w Ekonomi)

Abstract

Celem pracy jest ocena wybranych jądrowych estymatorów funkcji regresji jako narzędzi prognozowania indeksu WIG. Prognozie poddano dwa szeregi czasowe: logarytmiczne stopy zmian indeksu oraz ich kwadraty. W badaniu zastosowano cztery metody prognozowania: estymator Nadarai-Watsona, lokalną jądrową regresję liniową oraz – dla porównania – model regresji liniowej i metodę naiwną. Jako zmienne objaśniające w modelach regresji zastosowano opóźnione o jeden dzień: indeks S&P 500, kurs USD/PLN, wolumen obrotów spółek wchodzących w skład indeksu WIG, a także zmienną autoregresyjną. Do oceny możliwości predykcyjnych analizowanych metod wykorzystano cztery różne kryteria jakości prognoz. Otrzymane wyniki nie pozwalają na sformułowanie jednoznacznego wniosku o wyższości estymatorów jądrowych nad pozostałymi zastosowanymi metodami prognozowania. Wykazano jednak, że w pewnych sytuacjach metody te mogą być użytecznymi narzędziami prognozowania. Zależy to np. od prognozowanego okresu, zastosowanego predyktora czy przyjętego kryterium jakości prognozy.

Suggested Citation

  • Witold Orzeszko, 2018. "Prognozowanie indeksu WIG za pomocą jądrowych estymatorów funkcji regresji," Bank i Kredyt, Narodowy Bank Polski, vol. 49(3), pages 253-288.
  • Handle: RePEc:nbp:nbpbik:v:49:y:2018:i:3:p:253-288
    as

    Download full text from publisher

    File URL: https://bankikredyt.nbp.pl/content/2018/03/BIK_03_2018_03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Härdle & Helmut Lütkepohl & Rong Chen, 1997. "A Review of Nonparametric Time Series Analysis," International Statistical Review, International Statistical Institute, vol. 65(1), pages 49-72, April.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Jeffrey Racine, 2008. "Nonparametric econometrics: a primer (in Russian)," Quantile, Quantile, issue 4, pages 7-56, March.
    4. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    5. Racine, Jeffrey S., 2008. "Nonparametric Econometrics: A Primer," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(1), pages 1-88, March.
    6. Ramsey James B., 1996. "If Nonlinear Models Cannot Forecast, What Use Are They?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(2), pages 1-24, July.
    7. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    2. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    3. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    4. Bertrand Maillet & Thierry Michel, 2000. "Further insights on the puzzle of technical analysis profitability," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 196-224.
    5. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    6. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    7. Sousa, Ricardo M., 2010. "Consumption, (dis)aggregate wealth, and asset returns," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 606-622, September.
    8. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    9. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    10. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    11. Kirt Butler & Katsushi Okada, 2007. "Bivariate and higher-order terms in models of international equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 725-737.
    12. repec:ipg:wpaper:20 is not listed on IDEAS
    13. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    14. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    15. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    17. Carlo Rosa & Giovanni Verga, 2006. "The Impact of Central Bank Announcements on Asset Prices in Real Time: Testing the Efficiency of the Euribor Futures Market," CEP Discussion Papers dp0764, Centre for Economic Performance, LSE.
    18. Xianfeng Jiang & Yongdong Shi, 2006. "The Impact of Insider Trading on the Secondary Market with Order-Driven System," Annals of Economics and Finance, Society for AEF, vol. 7(1), pages 129-143, May.
    19. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.
    20. Roberto Martino & Phu Nguyen-Van, 2014. "Labour market regulation and fiscal parameters: A structural model for European regions," Working Papers of BETA 2014-19, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    21. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    22. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.

    More about this item

    Keywords

    prognozowanie indeksu WIG; regresja nieparametryczna; jądrowe estymatory funkcji regresji; estymator Nadarai-Watsona; lokalna jądrowa regresja liniowa;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbp:nbpbik:v:49:y:2018:i:3:p:253-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wojciech Burjanek (email available below). General contact details of provider: https://edirc.repec.org/data/nbpgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.