IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v616y2023i7957d10.1038_s41586-023-05810-5.html
   My bibliography  Save this article

Successful kinetic impact into an asteroid for planetary defence

Author

Listed:
  • R. Terik Daly

    (Johns Hopkins University Applied Physics Laboratory)

  • Carolyn M. Ernst

    (Johns Hopkins University Applied Physics Laboratory)

  • Olivier S. Barnouin

    (Johns Hopkins University Applied Physics Laboratory)

  • Nancy L. Chabot

    (Johns Hopkins University Applied Physics Laboratory)

  • Andrew S. Rivkin

    (Johns Hopkins University Applied Physics Laboratory)

  • Andrew F. Cheng

    (Johns Hopkins University Applied Physics Laboratory)

  • Elena Y. Adams

    (Johns Hopkins University Applied Physics Laboratory)

  • Harrison F. Agrusa

    (University of Maryland)

  • Elisabeth D. Abel

    (Johns Hopkins University Applied Physics Laboratory)

  • Amy L. Alford

    (Johns Hopkins University Applied Physics Laboratory)

  • Erik I. Asphaug

    (University of Arizona)

  • Justin A. Atchison

    (Johns Hopkins University Applied Physics Laboratory)

  • Andrew R. Badger

    (Johns Hopkins University Applied Physics Laboratory)

  • Paul Baki

    (Technical University of Kenya)

  • Ronald-L. Ballouz

    (Johns Hopkins University Applied Physics Laboratory)

  • Dmitriy L. Bekker

    (Johns Hopkins University Applied Physics Laboratory)

  • Julie Bellerose

    (California Institute of Technology)

  • Shyam Bhaskaran

    (California Institute of Technology)

  • Bonnie J. Buratti

    (California Institute of Technology)

  • Saverio Cambioni

    (Massachusetts Institute of Technology)

  • Michelle H. Chen

    (Johns Hopkins University Applied Physics Laboratory)

  • Steven R. Chesley

    (California Institute of Technology)

  • George Chiu

    (Johns Hopkins University Applied Physics Laboratory)

  • Gareth S. Collins

    (Imperial College London)

  • Matthew W. Cox

    (Johns Hopkins University Applied Physics Laboratory)

  • Mallory E. DeCoster

    (Johns Hopkins University Applied Physics Laboratory)

  • Peter S. Ericksen

    (Johns Hopkins University Applied Physics Laboratory)

  • Raymond C. Espiritu

    (Johns Hopkins University Applied Physics Laboratory)

  • Alan S. Faber

    (Johns Hopkins University Applied Physics Laboratory)

  • Tony L. Farnham

    (University of Maryland)

  • Fabio Ferrari

    (Politecnico di Milano)

  • Zachary J. Fletcher

    (Johns Hopkins University Applied Physics Laboratory)

  • Robert W. Gaskell

    (Planetary Science Institute)

  • Dawn M. Graninger

    (Johns Hopkins University Applied Physics Laboratory)

  • Musad A. Haque

    (Johns Hopkins University Applied Physics Laboratory)

  • Patricia A. Harrington-Duff

    (Johns Hopkins University Applied Physics Laboratory)

  • Sarah Hefter

    (Johns Hopkins University Applied Physics Laboratory)

  • Isabel Herreros

    (Centro de Astrobiologiá (CAB) CSIC-INTA)

  • Masatoshi Hirabayashi

    (Auburn University)

  • Philip M. Huang

    (Johns Hopkins University Applied Physics Laboratory)

  • Syau-Yun W. Hsieh

    (Johns Hopkins University Applied Physics Laboratory)

  • Seth A. Jacobson

    (Michigan State University)

  • Stephen N. Jenkins

    (Johns Hopkins University Applied Physics Laboratory)

  • Mark A. Jensenius

    (Johns Hopkins University Applied Physics Laboratory)

  • Jeremy W. John

    (Johns Hopkins University Applied Physics Laboratory)

  • Martin Jutzi

    (University of Bern)

  • Tomas Kohout

    (Institute of Geology of the Czech Academy of Sciences
    University of Helsinki)

  • Timothy O. Krueger

    (Johns Hopkins University Applied Physics Laboratory)

  • Frank E. Laipert

    (California Institute of Technology
    Nabla Zero Labs)

  • Norberto R. Lopez

    (Johns Hopkins University Applied Physics Laboratory)

  • Robert Luther

    (Leibniz Institute for Evolution and Biodiversity Science)

  • Alice Lucchetti

    (INAF-Astronomical Observatory of Padova)

  • Declan M. Mages

    (California Institute of Technology)

  • Simone Marchi

    (Southwest Research Institute)

  • Anna C. Martin

    (Johns Hopkins University Applied Physics Laboratory)

  • Maria E. McQuaide

    (Johns Hopkins University Applied Physics Laboratory)

  • Patrick Michel

    (Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange)

  • Nicholas A. Moskovitz

    (Lowell Observatory)

  • Ian W. Murphy

    (Johns Hopkins University Applied Physics Laboratory)

  • Naomi Murdoch

    (Université de Toulouse)

  • Shantanu P. Naidu

    (California Institute of Technology)

  • Hari Nair

    (Johns Hopkins University Applied Physics Laboratory)

  • Michael C. Nolan

    (University of Arizona)

  • Jens Ormö

    (Centro de Astrobiologiá (CAB) CSIC-INTA)

  • Maurizio Pajola

    (INAF-Astronomical Observatory of Padova)

  • Eric E. Palmer

    (Planetary Science Institute)

  • James M. Peachey

    (Johns Hopkins University Applied Physics Laboratory)

  • Petr Pravec

    (Astronomical Institute AS CR)

  • Sabina D. Raducan

    (University of Bern)

  • K. T. Ramesh

    (Johns Hopkins University)

  • Joshua R. Ramirez

    (Johns Hopkins University Applied Physics Laboratory)

  • Edward L. Reynolds

    (Johns Hopkins University Applied Physics Laboratory)

  • Joshua E. Richman

    (Johns Hopkins University Applied Physics Laboratory)

  • Colas Q. Robin

    (Université de Toulouse)

  • Luis M. Rodriguez

    (Johns Hopkins University Applied Physics Laboratory)

  • Lew M. Roufberg

    (Johns Hopkins University Applied Physics Laboratory)

  • Brian P. Rush

    (California Institute of Technology)

  • Carolyn A. Sawyer

    (Johns Hopkins University Applied Physics Laboratory)

  • Daniel J. Scheeres

    (University of Colorado)

  • Petr Scheirich

    (Astronomical Institute AS CR)

  • Stephen R. Schwartz

    (Planetary Science Institute)

  • Matthew P. Shannon

    (Johns Hopkins University Applied Physics Laboratory)

  • Brett N. Shapiro

    (Johns Hopkins University Applied Physics Laboratory)

  • Caitlin E. Shearer

    (Johns Hopkins University Applied Physics Laboratory)

  • Evan J. Smith

    (Johns Hopkins University Applied Physics Laboratory)

  • R. Joshua Steele

    (Johns Hopkins University Applied Physics Laboratory)

  • Jordan K. Steckloff

    (Planetary Science Institute)

  • Angela M. Stickle

    (Johns Hopkins University Applied Physics Laboratory)

  • Jessica M. Sunshine

    (University of Maryland)

  • Emil A. Superfin

    (Johns Hopkins University Applied Physics Laboratory)

  • Zahi B. Tarzi

    (California Institute of Technology)

  • Cristina A. Thomas

    (Northern Arizona University)

  • Justin R. Thomas

    (Johns Hopkins University Applied Physics Laboratory)

  • Josep M. Trigo-Rodríguez

    (Institute of Space Sciences)

  • B. Teresa Tropf

    (Johns Hopkins University Applied Physics Laboratory)

  • Andrew T. Vaughan

    (California Institute of Technology)

  • Dianna Velez

    (California Institute of Technology)

  • C. Dany Waller

    (Johns Hopkins University Applied Physics Laboratory)

  • Daniel S. Wilson

    (Johns Hopkins University Applied Physics Laboratory)

  • Kristin A. Wortman

    (Johns Hopkins University Applied Physics Laboratory)

  • Yun Zhang

    (University of Maryland)

Abstract

Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1–3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA’s Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission’s target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft’s autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.

Suggested Citation

  • R. Terik Daly & Carolyn M. Ernst & Olivier S. Barnouin & Nancy L. Chabot & Andrew S. Rivkin & Andrew F. Cheng & Elena Y. Adams & Harrison F. Agrusa & Elisabeth D. Abel & Amy L. Alford & Erik I. Asphau, 2023. "Successful kinetic impact into an asteroid for planetary defence," Nature, Nature, vol. 616(7957), pages 443-447, April.
  • Handle: RePEc:nat:nature:v:616:y:2023:i:7957:d:10.1038_s41586-023-05810-5
    DOI: 10.1038/s41586-023-05810-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05810-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05810-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Barnouin & Ronald-Louis Ballouz & Simone Marchi & Jean-Baptiste Vincent & Harrison Agrusa & Yun Zhang & Carolyn M. Ernst & Maurizio Pajola & Filippo Tusberti & Alice Lucchetti & R. Terik Daly , 2024. "The geology and evolution of the Near-Earth binary asteroid system (65803) Didymos," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. J. Bigot & P. Lombardo & N. Murdoch & D. J. Scheeres & D. Vivet & Y. Zhang & J. Sunshine & J. B. Vincent & O. S. Barnouin & C. M. Ernst & R. T. Daly & C. Sunday & P. Michel & A. Campo-Bagatin & A. Luc, 2024. "The bearing capacity of asteroid (65803) Didymos estimated from boulder tracks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Elisabetta Dotto & Angelo Zinzi, 2023. "Impact observations of asteroid Dimorphos via Light Italian CubeSat for imaging of asteroids (LICIACube)," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    4. Adriano Campo Bagatin & Aldo Dell’Oro & Laura M. Parro & Paula G. Benavidez & Seth Jacobson & Alice Lucchetti & Francesco Marzari & Patrick Michel & Maurizio Pajola & Jean-Baptiste Vincent, 2024. "Recent collisional history of (65803) Didymos," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. M. Pajola & F. Tusberti & A. Lucchetti & O. Barnouin & S. Cambioni & C. M. Ernst & E. Dotto & R. T. Daly & G. Poggiali & M. Hirabayashi & R. Nakano & E. Mazzotta Epifani & N. L. Chabot & V. Corte & A., 2024. "Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Marco Cinelli, 2024. "Mitigation of the Collision Risk of a Virtual Impactor Based on the 2011 AG5 Asteroid Using a Kinetic Impactor," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    7. A. Lucchetti & S. Cambioni & R. Nakano & O. S. Barnouin & M. Pajola & L. Penasa & F. Tusberti & K. T. Ramesh & E. Dotto & C. M. Ernst & R. T. Daly & E. Mazzotta Epifani & M. Hirabayashi & L. Parro & G, 2024. "Fast boulder fracturing by thermal fatigue detected on stony asteroids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Colas Q. Robin & Alexia Duchene & Naomi Murdoch & Jean-Baptiste Vincent & Alice Lucchetti & Maurizio Pajola & Carolyn M. Ernst & R. Terik Daly & Olivier S. Barnouin & Sabina D. Raducan & Patrick Miche, 2024. "Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:616:y:2023:i:7957:d:10.1038_s41586-023-05810-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.