IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56010-w.html
   My bibliography  Save this article

Elliptical ejecta of asteroid Dimorphos is due to its surface curvature

Author

Listed:
  • Masatoshi Hirabayashi

    (Georgia Institute of Technology)

  • Sabina D. Raducan

    (University of Bern)

  • Jessica M. Sunshine

    (University of Maryland)

  • Tony L. Farnham

    (University of Maryland)

  • J. D. P. Deshapriya

    (INAF-Osservatorio Astronomico di Roma)

  • Jian-Yang Li

    (Sun Yat-sen University
    Planetary Science Institute)

  • Gonzalo Tancredi

    (UdelaR)

  • Steven R. Chesley

    (California Institute of Technology)

  • R. Terik Daly

    (Johns Hopkins University Applied Physics Laboratory)

  • Carolyn M. Ernst

    (Johns Hopkins University Applied Physics Laboratory)

  • Igor Gai

    (Alma Mater Studiorum - Università di Bologna)

  • Pedro H. Hasselmann

    (INAF-Osservatorio Astronomico di Roma)

  • Shantanu P. Naidu

    (California Institute of Technology)

  • Hari Nair

    (Johns Hopkins University Applied Physics Laboratory)

  • Eric E. Palmer

    (Planetary Science Institute)

  • C. Dany Waller

    (Johns Hopkins University Applied Physics Laboratory)

  • Angelo Zinzi

    (Agenzia Spaziale Italiana (ASI)
    ASI)

  • Harrison F. Agrusa

    (University of Maryland
    Laboratoire Lagrange)

  • Brent W. Barbee

    (NASA/Goddard Space Flight Center)

  • Megan Bruck Syal

    (Lawrence Livermore National Laboratory)

  • Gareth S. Collins

    (Imperial College London)

  • Thomas M. Davison

    (Imperial College London)

  • Mallory E. DeCoster

    (Johns Hopkins University Applied Physics Laboratory)

  • Martin Jutzi

    (University of Bern)

  • Kathryn M. Kumamoto

    (Lawrence Livermore National Laboratory)

  • Nicholas A. Moskovitz

    (Lowell Observatory)

  • Joshua R. Lyzhoft

    (NASA/Goddard Space Flight Center)

  • Stephen R. Schwartz

    (Planetary Science Institute
    Universidad de Alicante)

  • Paul A. Abell

    (NASA Johnson Space Center)

  • Olivier S. Barnouin

    (Johns Hopkins University Applied Physics Laboratory)

  • Nancy L. Chabot

    (Johns Hopkins University Applied Physics Laboratory)

  • Andrew F. Cheng

    (Johns Hopkins University Applied Physics Laboratory)

  • Elisabetta Dotto

    (INAF-Osservatorio Astronomico di Roma)

  • Eugene G. Fahnestock

    (California Institute of Technology)

  • Patrick Michel

    (Laboratoire Lagrange
    The University of Tokyo)

  • Derek C. Richardson

    (University of Maryland)

  • Andrew S. Rivkin

    (Johns Hopkins University Applied Physics Laboratory)

  • Angela M. Stickle

    (Johns Hopkins University Applied Physics Laboratory)

  • Cristina A. Thomas

    (Northern Arizona University)

  • Joel Beccarelli

    (INAF-Osservatorio Astronomico di Padova)

  • John R. Brucato

    (INAF-Osservatorio Astronomico di Arcetri)

  • Massimo Dall’Ora

    (INAF-Osservatorio Astronomico di Capodimonte)

  • Vincenzo Della Corte

    (INAF-Osservatorio Astronomico di Capodimonte)

  • Elena Mazzotta Epifani

    (INAF-Osservatorio Astronomico di Roma)

  • Simone Ieva

    (INAF-Osservatorio Astronomico di Roma)

  • Gabriele Impresario

    (Agenzia Spaziale Italiana (ASI))

  • Stavro Ivanovski

    (INAF-Osservatorio Astronomico di Trieste)

  • Alice Lucchetti

    (INAF-Osservatorio Astronomico di Padova)

  • Dario Modenini

    (Alma Mater Studiorum - Università di Bologna)

  • Maurizio Pajola

    (INAF-Osservatorio Astronomico di Padova)

  • Pasquale Palumbo

    (INAF-Istituto di Astrofisica e Planetologia Spaziali)

  • Simone Pirrotta

    (Agenzia Spaziale Italiana (ASI))

  • Giovanni Poggiali

    (INAF-Osservatorio Astronomico di Arcetri)

  • Alessandro Rossi

    (IFAC-Istituto di fisica applicata Nello Carrara)

  • Paolo Tortora

    (Alma Mater Studiorum - Università di Bologna)

  • Filippo Tusberti

    (INAF-Osservatorio Astronomico di Padova)

  • Marco Zannoni

    (Alma Mater Studiorum - Università di Bologna)

  • Giovanni Zanotti

    (Politecnico di Milano)

  • Fabio Ferrari

    (Politecnico di Milano)

  • David A. Glenar

    (NASA/Goddard Space Flight Center
    University of Maryland Baltimore County)

  • Isabel Herreros

    (CSIC-INTA)

  • Seth A. Jacobson

    (Michigan State University)

  • Özgür Karatekin

    (Royal Observatory of Belgium)

  • Monica Lazzarin

    (Università di Padova)

  • Ramin Lolachi

    (NASA/Goddard Space Flight Center
    University of Maryland Baltimore County)

  • Michael P. Lucas

    (Florida Space Institute)

  • Rahil Makadia

    (University of Illinois at Urbana-Champaign)

  • Francesco Marzari

    (Università di Padova)

  • Colby C. Merrill

    (Cornell University)

  • Alessandra Migliorini

    (INAF-Istituto di Astrofisica e Planetologia Spaziali)

  • Ryota Nakano

    (Georgia Institute of Technology)

  • Jens Ormö

    (CSIC-INTA)

  • Paul Sánchez

    (University of Colorado Boulder)

  • Cem Berk Senel

    (Royal Observatory of Belgium
    Vrije Universiteit Brussel)

  • Stefania Soldini

    (University of Liverpool)

  • Timothy J. Stubbs

    (NASA/Goddard Space Flight Center)

Abstract

Kinetic deflection is a planetary defense technique delivering spacecraft momentum to a small body to deviate its course from Earth. The deflection efficiency depends on the impactor and target. Among them, the contribution of global curvature was poorly understood. The ejecta plume created by NASA’s Double Asteroid Redirection Test impact on its target asteroid, Dimorphos, exhibited an elliptical shape almost aligned along its north-south direction. Here, we identify that this elliptical ejecta plume resulted from the target’s curvature, reducing the momentum transfer to 44 ± 10% along the orbit track compared to an equivalent impact on a flat target. We also find lower kinetic deflection of impacts on smaller near-Earth objects due to higher curvature. A solution to mitigate low deflection efficiency is to apply multiple low-energy impactors rather than a single high-energy impactor. Rapid reconnaissance to acquire a target’s properties before deflection enables determining the proper locations and timing of impacts.

Suggested Citation

  • Masatoshi Hirabayashi & Sabina D. Raducan & Jessica M. Sunshine & Tony L. Farnham & J. D. P. Deshapriya & Jian-Yang Li & Gonzalo Tancredi & Steven R. Chesley & R. Terik Daly & Carolyn M. Ernst & Igor , 2025. "Elliptical ejecta of asteroid Dimorphos is due to its surface curvature," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56010-w
    DOI: 10.1038/s41467-025-56010-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56010-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56010-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Dotto & J. D. P. Deshapriya & I. Gai & P. H. Hasselmann & E. Mazzotta Epifani & G. Poggiali & A. Rossi & G. Zanotti & A. Zinzi & I. Bertini & J. R. Brucato & M. Dall’Ora & V. Corte & S. L. Ivanovsk, 2024. "The Dimorphos ejecta plume properties revealed by LICIACube," Nature, Nature, vol. 627(8004), pages 505-509, March.
    2. Colas Q. Robin & Alexia Duchene & Naomi Murdoch & Jean-Baptiste Vincent & Alice Lucchetti & Maurizio Pajola & Carolyn M. Ernst & R. Terik Daly & Olivier S. Barnouin & Sabina D. Raducan & Patrick Miche, 2024. "Author Correction: Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis," Nature Communications, Nature, vol. 15(1), pages 1-1, December.
    3. Andrew F. Cheng & Harrison F. Agrusa & Brent W. Barbee & Alex J. Meyer & Tony L. Farnham & Sabina D. Raducan & Derek C. Richardson & Elisabetta Dotto & Angelo Zinzi & Vincenzo Corte & Thomas S. Statle, 2023. "Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos," Nature, Nature, vol. 616(7957), pages 457-460, April.
    4. Martin Jutzi & Sabina D. Raducan & Yun Zhang & Patrick Michel & Masahiko Arakawa, 2022. "Constraining surface properties of asteroid (162173) Ryugu from numerical simulations of Hayabusa2 mission impact experiment," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. R. Terik Daly & Carolyn M. Ernst & Olivier S. Barnouin & Nancy L. Chabot & Andrew S. Rivkin & Andrew F. Cheng & Elena Y. Adams & Harrison F. Agrusa & Elisabeth D. Abel & Amy L. Alford & Erik I. Asphau, 2023. "Successful kinetic impact into an asteroid for planetary defence," Nature, Nature, vol. 616(7957), pages 443-447, April.
    6. Cristina A. Thomas & Shantanu P. Naidu & Peter Scheirich & Nicholas A. Moskovitz & Petr Pravec & Steven R. Chesley & Andrew S. Rivkin & David J. Osip & Tim A. Lister & Lance A. M. Benner & Marina Broz, 2023. "Orbital period change of Dimorphos due to the DART kinetic impact," Nature, Nature, vol. 616(7957), pages 448-451, April.
    7. Elisabetta Dotto & Angelo Zinzi, 2023. "Author Correction: Impact observations of asteroid Dimorphos via Light Italian CubeSat for imaging of asteroids (LICIACube)," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    8. Colas Q. Robin & Alexia Duchene & Naomi Murdoch & Jean-Baptiste Vincent & Alice Lucchetti & Maurizio Pajola & Carolyn M. Ernst & R. Terik Daly & Olivier S. Barnouin & Sabina D. Raducan & Patrick Miche, 2024. "Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Barnouin & Ronald-Louis Ballouz & Simone Marchi & Jean-Baptiste Vincent & Harrison Agrusa & Yun Zhang & Carolyn M. Ernst & Maurizio Pajola & Filippo Tusberti & Alice Lucchetti & R. Terik Daly , 2024. "The geology and evolution of the Near-Earth binary asteroid system (65803) Didymos," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Fabio Ferrari & Paolo Panicucci & Gianmario Merisio & Carmine Giordano & Mattia Pugliatti & Jian-Yang Li & Eugene G. Fahnestock & Sabina D. Raducan & Martin Jutzi & Stefania Soldini & Masatoshi Hiraba, 2025. "Morphology of ejecta features from the impact on asteroid Dimorphos," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. J. Bigot & P. Lombardo & N. Murdoch & D. J. Scheeres & D. Vivet & Y. Zhang & J. Sunshine & J. B. Vincent & O. S. Barnouin & C. M. Ernst & R. T. Daly & C. Sunday & P. Michel & A. Campo-Bagatin & A. Luc, 2024. "The bearing capacity of asteroid (65803) Didymos estimated from boulder tracks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Elisabetta Dotto & Angelo Zinzi, 2023. "Impact observations of asteroid Dimorphos via Light Italian CubeSat for imaging of asteroids (LICIACube)," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    5. M. Pajola & F. Tusberti & A. Lucchetti & O. Barnouin & S. Cambioni & C. M. Ernst & E. Dotto & R. T. Daly & G. Poggiali & M. Hirabayashi & R. Nakano & E. Mazzotta Epifani & N. L. Chabot & V. Corte & A., 2024. "Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Adriano Campo Bagatin & Aldo Dell’Oro & Laura M. Parro & Paula G. Benavidez & Seth Jacobson & Alice Lucchetti & Francesco Marzari & Patrick Michel & Maurizio Pajola & Jean-Baptiste Vincent, 2024. "Recent collisional history of (65803) Didymos," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Marco Cinelli, 2024. "Mitigation of the Collision Risk of a Virtual Impactor Based on the 2011 AG5 Asteroid Using a Kinetic Impactor," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    8. Colas Q. Robin & Alexia Duchene & Naomi Murdoch & Jean-Baptiste Vincent & Alice Lucchetti & Maurizio Pajola & Carolyn M. Ernst & R. Terik Daly & Olivier S. Barnouin & Sabina D. Raducan & Patrick Miche, 2024. "Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. A. Lucchetti & S. Cambioni & R. Nakano & O. S. Barnouin & M. Pajola & L. Penasa & F. Tusberti & K. T. Ramesh & E. Dotto & C. M. Ernst & R. T. Daly & E. Mazzotta Epifani & M. Hirabayashi & L. Parro & G, 2024. "Fast boulder fracturing by thermal fatigue detected on stony asteroids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Detlef V. Koschny & Kelly E. Fast & Romana Kofler, 2024. "About the International Asteroid Warning Network (IAWN) and the Space Mission Planning Advisory Group (SMPAG)," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    11. K. J. Walsh & R-L. Ballouz & W. F. Bottke & C. Avdellidou & H. C. Connolly Jr & M. Delbo & D. N. DellaGiustina & E. R. Jawin & T. McCoy & P. Michel & T. Morota & M. C. Nolan & S. R. Schwartz & S. Sugi, 2024. "Numerical simulations suggest asteroids (101955) Bennu and (162173) Ryugu are likely second or later generation rubble piles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56010-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.