IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v614y2023i7948d10.1038_s41586-022-05644-7.html
   My bibliography  Save this article

Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution

Author

Listed:
  • Yunlong Cao

    (Peking University
    Changping Laboratory)

  • Fanchong Jian

    (Peking University
    Peking University)

  • Jing Wang

    (Peking University
    Peking University)

  • Yuanling Yu

    (Changping Laboratory)

  • Weiliang Song

    (Peking University
    Peking University)

  • Ayijiang Yisimayi

    (Peking University
    Peking University)

  • Jing Wang

    (Changping Laboratory)

  • Ran An

    (Changping Laboratory)

  • Xiaosu Chen

    (Nankai University)

  • Na Zhang

    (Changping Laboratory)

  • Yao Wang

    (Changping Laboratory)

  • Peng Wang

    (Changping Laboratory)

  • Lijuan Zhao

    (Changping Laboratory)

  • Haiyan Sun

    (Changping Laboratory)

  • Lingling Yu

    (Changping Laboratory)

  • Sijie Yang

    (Peking University
    Peking University)

  • Xiao Niu

    (Peking University
    Peking University)

  • Tianhe Xiao

    (Peking University
    Peking University)

  • Qingqing Gu

    (Changping Laboratory)

  • Fei Shao

    (Changping Laboratory)

  • Xiaohua Hao

    (Capital Medical University)

  • Yanli Xu

    (Capital Medical University)

  • Ronghua Jin

    (Capital Medical University)

  • Zhongyang Shen

    (Nankai University)

  • Youchun Wang

    (Changping Laboratory
    National Institutes for Food and Drug Control (NIFDC))

  • Xiaoliang Sunney Xie

    (Peking University
    Changping Laboratory)

Abstract

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.

Suggested Citation

  • Yunlong Cao & Fanchong Jian & Jing Wang & Yuanling Yu & Weiliang Song & Ayijiang Yisimayi & Jing Wang & Ran An & Xiaosu Chen & Na Zhang & Yao Wang & Peng Wang & Lijuan Zhao & Haiyan Sun & Lingling Yu , 2023. "Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution," Nature, Nature, vol. 614(7948), pages 521-529, February.
  • Handle: RePEc:nat:nature:v:614:y:2023:i:7948:d:10.1038_s41586-022-05644-7
    DOI: 10.1038/s41586-022-05644-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05644-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05644-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Ward & Martyn Fyles & Alex Glaser & Robert S. Paton & William Ferguson & Christopher E. Overton, 2024. "The real-time infection hospitalisation and fatality risk across the COVID-19 pandemic in England," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Haonan Yang & Huimin Guo & Aojie Wang & Liwei Cao & Qing Fan & Jie Jiang & Miao Wang & Lin Lin & Xiangyang Ge & Haiyan Wang & Runze Zhang & Ming Liao & Renhong Yan & Bin Ju & Zheng Zhang, 2024. "Structural basis for the evolution and antibody evasion of SARS-CoV-2 BA.2.86 and JN.1 subvariants," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Tomokazu Tamura & Jumpei Ito & Keiya Uriu & Jiri Zahradnik & Izumi Kida & Yuki Anraku & Hesham Nasser & Maya Shofa & Yoshitaka Oda & Spyros Lytras & Naganori Nao & Yukari Itakura & Sayaka Deguchi & Ri, 2023. "Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Chengzi I. Kaku & Tyler N. Starr & Panpan Zhou & Haley L. Dugan & Paul Khalifé & Ge Song & Elizabeth R. Champney & Daniel W. Mielcarz & James C. Geoghegan & Dennis R. Burton & Raiees Andrabi & Jesse D, 2023. "Evolution of antibody immunity following Omicron BA.1 breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Hisano Yajima & Yuki Anraku & Yu Kaku & Kanako Terakado Kimura & Arnon Plianchaisuk & Kaho Okumura & Yoshiko Nakada-Nakura & Yusuke Atarashi & Takuya Hemmi & Daisuke Kuroda & Yoshimasa Takahashi & Shu, 2024. "Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jumpei Ito & Rigel Suzuki & Keiya Uriu & Yukari Itakura & Jiri Zahradnik & Kanako Terakado Kimura & Sayaka Deguchi & Lei Wang & Spyros Lytras & Tomokazu Tamura & Izumi Kida & Hesham Nasser & Maya Shof, 2023. "Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Qihong Yan & Xijie Gao & Banghui Liu & Ruitian Hou & Ping He & Yong Ma & Yudi Zhang & Yanjun Zhang & Zimu Li & Qiuluan Chen & Jingjing Wang & Xiaohan Huang & Huan Liang & Huiran Zheng & Yichen Yao & X, 2024. "Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Felix Dewald & Martin Pirkl & Martha Paluschinski & Joachim Kühn & Carina Elsner & Bianca Schulte & Jacqueline Knüfer & Elvin Ahmadov & Maike Schlotz & Göksu Oral & Michael Bernhard & Mark Michael & M, 2023. "Impaired humoral immunity to BQ.1.1 in convalescent and vaccinated patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jimin Lee & Cameron Stewart & Alexandra Schäfer & Elizabeth M. Leaf & Young-Jun Park & Daniel Asarnow & John M. Powers & Catherine Treichel & Kaitlin R. Sprouse & Davide Corti & Ralph Baric & Neil P. , 2024. "A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Zhennan Zhao & Yufeng Xie & Bin Bai & Chunliang Luo & Jingya Zhou & Weiwei Li & Yumin Meng & Linjie Li & Dedong Li & Xiaomei Li & Xiaoxiong Li & Xiaoyun Wang & Junqing Sun & Zepeng Xu & Yeping Sun & W, 2023. "Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Yuanchen Liu & Xiaoyu Zhao & Jialu Shi & Yajie Wang & Huan Liu & Ye-Fan Hu & Bingjie Hu & Huiping Shuai & Terrence Tsz-Tai Yuen & Yue Chai & Feifei Liu & Hua-Rui Gong & Jiayan Li & Xun Wang & Shujun J, 2024. "Lineage-specific pathogenicity, immune evasion, and virological features of SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Yingdan Wang & Aihua Hao & Ping Ji & Yunping Ma & Zhaoyong Zhang & Jiali Chen & Qiyu Mao & Xinyi Xiong & Palizhati Rehati & Yajie Wang & Yanqun Wang & Yumei Wen & Lu Lu & Zhenguo Chen & Jincun Zhao & , 2024. "A bispecific antibody exhibits broad neutralization against SARS-CoV-2 Omicron variants XBB.1.16, BQ.1.1 and sarbecoviruses," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:614:y:2023:i:7948:d:10.1038_s41586-022-05644-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.