IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47199-3.html
   My bibliography  Save this article

The real-time infection hospitalisation and fatality risk across the COVID-19 pandemic in England

Author

Listed:
  • Thomas Ward

    (Analytics and Surveillance)

  • Martyn Fyles

    (Analytics and Surveillance)

  • Alex Glaser

    (Analytics and Surveillance)

  • Robert S. Paton

    (Analytics and Surveillance)

  • William Ferguson

    (Analytics and Surveillance)

  • Christopher E. Overton

    (Analytics and Surveillance
    Department of Mathematical Sciences)

Abstract

The COVID-19 pandemic led to 231,841 deaths and 940,243 hospitalisations in England, by the end of March 2023. This paper calculates the real-time infection hospitalisation risk (IHR) and infection fatality risk (IFR) using the Office for National Statistics Coronavirus Infection Survey (ONS CIS) and the Real-time Assessment of Community Transmission Survey between November 2020 to March 2023. The IHR and the IFR in England peaked in January 2021 at 3.39% (95% Credible Intervals (CrI): 2.79, 3.97) and 0.97% (95% CrI: 0.62, 1.36), respectively. After this time, there was a rapid decline in the severity from infection, with the lowest estimated IHR of 0.32% (95% CrI: 0.27, 0.39) in December 2022 and IFR of 0.06% (95% CrI: 0.04, 0.08) in April 2022. We found infection severity to vary more markedly between regions early in the pandemic however, the absolute heterogeneity has since reduced. The risk from infection of SARS-CoV-2 has changed substantially throughout the COVID-19 pandemic with a decline of 86.03% (80.86, 89.35) and 89.67% (80.18, 93.93) in the IHR and IFR, respectively, since early 2021. From April 2022 until March 2023, the end of the ONS CIS study, we found fluctuating patterns in the severity of infection with the resumption of more normative mixing, resurgent epidemic waves, patterns of waning immunity, and emerging variants that have shown signs of convergent evolution.

Suggested Citation

  • Thomas Ward & Martyn Fyles & Alex Glaser & Robert S. Paton & William Ferguson & Christopher E. Overton, 2024. "The real-time infection hospitalisation and fatality risk across the COVID-19 pandemic in England," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47199-3
    DOI: 10.1038/s41467-024-47199-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47199-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47199-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Ward & Alexander Johnsen, 2021. "Understanding an evolving pandemic: An analysis of the clinical time delay distributions of COVID-19 in the United Kingdom," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-15, October.
    2. Yunlong Cao & Fanchong Jian & Jing Wang & Yuanling Yu & Weiliang Song & Ayijiang Yisimayi & Jing Wang & Ran An & Xiaosu Chen & Na Zhang & Yao Wang & Peng Wang & Lijuan Zhao & Haiyan Sun & Lingling Yu , 2023. "Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution," Nature, Nature, vol. 614(7948), pages 521-529, February.
    3. Christina J. Atchison & Bethan Davies & Emily Cooper & Adam Lound & Matthew Whitaker & Adam Hampshire & Adriana Azor & Christl A. Donnelly & Marc Chadeau-Hyam & Graham S. Cooke & Helen Ward & Paul Ell, 2023. "Long-term health impacts of COVID-19 among 242,712 adults in England," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Nicholas G. Reich & Justin Lessler & Derek A. T. Cummings & Ron Brookmeyer, 2012. "Estimating Absolute and Relative Case Fatality Ratios from Infectious Disease Surveillance Data," Biometrics, The International Biometric Society, vol. 68(2), pages 598-606, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Dewald & Martin Pirkl & Martha Paluschinski & Joachim Kühn & Carina Elsner & Bianca Schulte & Jacqueline Knüfer & Elvin Ahmadov & Maike Schlotz & Göksu Oral & Michael Bernhard & Mark Michael & M, 2023. "Impaired humoral immunity to BQ.1.1 in convalescent and vaccinated patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jumpei Ito & Rigel Suzuki & Keiya Uriu & Yukari Itakura & Jiri Zahradnik & Kanako Terakado Kimura & Sayaka Deguchi & Lei Wang & Spyros Lytras & Tomokazu Tamura & Izumi Kida & Hesham Nasser & Maya Shof, 2023. "Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Zhennan Zhao & Yufeng Xie & Bin Bai & Chunliang Luo & Jingya Zhou & Weiwei Li & Yumin Meng & Linjie Li & Dedong Li & Xiaomei Li & Xiaoxiong Li & Xiaoyun Wang & Junqing Sun & Zepeng Xu & Yeping Sun & W, 2023. "Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Bello, Piera & Rocco, Lorenzo, 2022. "Education and COVID-19 excess mortality," Economics & Human Biology, Elsevier, vol. 47(C).
    5. Tomokazu Tamura & Jumpei Ito & Keiya Uriu & Jiri Zahradnik & Izumi Kida & Yuki Anraku & Hesham Nasser & Maya Shofa & Yoshitaka Oda & Spyros Lytras & Naganori Nao & Yukari Itakura & Sayaka Deguchi & Ri, 2023. "Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Yingdan Wang & Aihua Hao & Ping Ji & Yunping Ma & Zhaoyong Zhang & Jiali Chen & Qiyu Mao & Xinyi Xiong & Palizhati Rehati & Yajie Wang & Yanqun Wang & Yumei Wen & Lu Lu & Zhenguo Chen & Jincun Zhao & , 2024. "A bispecific antibody exhibits broad neutralization against SARS-CoV-2 Omicron variants XBB.1.16, BQ.1.1 and sarbecoviruses," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Chengzi I. Kaku & Tyler N. Starr & Panpan Zhou & Haley L. Dugan & Paul Khalifé & Ge Song & Elizabeth R. Champney & Daniel W. Mielcarz & James C. Geoghegan & Dennis R. Burton & Raiees Andrabi & Jesse D, 2023. "Evolution of antibody immunity following Omicron BA.1 breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jimin Lee & Cameron Stewart & Alexandra Schäfer & Elizabeth M. Leaf & Young-Jun Park & Daniel Asarnow & John M. Powers & Catherine Treichel & Kaitlin R. Sprouse & Davide Corti & Ralph Baric & Neil P. , 2024. "A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Patrizio Vanella & Christian Wiessner & Anja Holz & Gérard Krause & Annika Möhl & Sarah Wiegel & Berit Lange & Heiko Becher, 2022. "Pitfalls and solutions in case fatality risk estimation – A multi-country analysis on the effects of demographics, surveillance, time lags between case reports and deaths and healthcare system capacit," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 20(1), pages 167-193.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47199-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.