IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7936d10.1038_s41586-022-05356-y.html
   My bibliography  Save this article

Real-time bioelectronic sensing of environmental contaminants

Author

Listed:
  • Joshua T. Atkinson

    (Rice University
    Rice University
    University of Southern California)

  • Lin Su

    (Rice University
    Southeast University
    Lawrence Berkeley National Laboratory
    University of Cambridge)

  • Xu Zhang

    (Rice University)

  • George N. Bennett

    (Rice University
    Rice University)

  • Jonathan J. Silberg

    (Rice University
    Rice University
    Rice University)

  • Caroline M. Ajo-Franklin

    (Rice University
    Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory)

Abstract

Real-time chemical sensing is crucial for applications in environmental and health monitoring1. Biosensors can detect a variety of molecules through genetic circuits that use these chemicals to trigger the synthesis of a coloured protein, thereby producing an optical signal2–4. However, the process of protein expression limits the speed of this sensing to approximately half an hour, and optical signals are often difficult to detect in situ5–8. Here we combine synthetic biology and materials engineering to develop biosensors that produce electrical readouts and have detection times of minutes. We programmed Escherichia coli to produce an electrical current in response to specific chemicals using a modular, eight-component, synthetic electron transport chain. As designed, this strain produced current following exposure to thiosulfate, an anion that causes microbial blooms, within 2 min. This amperometric sensor was then modified to detect an endocrine disruptor. The incorporation of a protein switch into the synthetic pathway and encapsulation of the bacteria with conductive nanomaterials enabled the detection of the endocrine disruptor in urban waterway samples within 3 min. Our results provide design rules to sense various chemicals with mass-transport-limited detection times and a new platform for miniature, low-power bioelectronic sensors that safeguard ecological and human health.

Suggested Citation

  • Joshua T. Atkinson & Lin Su & Xu Zhang & George N. Bennett & Jonathan J. Silberg & Caroline M. Ajo-Franklin, 2022. "Real-time bioelectronic sensing of environmental contaminants," Nature, Nature, vol. 611(7936), pages 548-553, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05356-y
    DOI: 10.1038/s41586-022-05356-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05356-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05356-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sally Wang & Chen-Yu Chen & John R. Rzasa & Chen-Yu Tsao & Jinyang Li & Eric VanArsdale & Eunkyoung Kim & Fauziah Rahma Zakaria & Gregory F. Payne & William E. Bentley, 2023. "Redox-enabled electronic interrogation and feedback control of hierarchical and networked biological systems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Jeong-Chan Lee & Su Yeong Kim & Jayeon Song & Hyowon Jang & Min Kim & Hanul Kim & Siyoung Q. Choi & Sunjoo Kim & Pawan Jolly & Taejoon Kang & Steve Park & Donald E. Ingber, 2024. "Micrometer-thick and porous nanocomposite coating for electrochemical sensors with exceptional antifouling and electroconducting properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Dalton R. George & Mark Danciu & Peter W. Davenport & Matthew R. Lakin & James Chappell & Emma K. Frow, 2024. "A bumpy road ahead for genetic biocontainment," Nature Communications, Nature, vol. 15(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7936:d:10.1038_s41586-022-05356-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.