IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v611y2022i7935d10.1038_s41586-022-05251-6.html
   My bibliography  Save this article

Functional CeOx nanoglues for robust atomically dispersed catalysts

Author

Listed:
  • Xu Li

    (Arizona State University
    University of Science and Technology of China)

  • Xavier Isidro Pereira-Hernández

    (Washington State University)

  • Yizhen Chen

    (University of California, Davis)

  • Jia Xu

    (Arizona State University)

  • Jiankang Zhao

    (University of Science and Technology of China)

  • Chih-Wen Pao

    (National Synchrotron Radiation Research Center)

  • Chia-Yu Fang

    (University of California, Davis
    University of California)

  • Jie Zeng

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Yong Wang

    (Washington State University
    Pacific Northwest National Laboratory)

  • Bruce C. Gates

    (University of California, Davis)

  • Jingyue Liu

    (Arizona State University)

Abstract

Single-atom catalysts1 make exceptionally efficient use of expensive noble metals and can bring out unique properties1–3. However, applications are usually compromised by limited catalyst stability, which is due to sintering3,4. Although sintering can be suppressed by anchoring the metal atoms to oxide supports1,5,6, strong metal–oxygen interactions often leave too few metal sites available for reactant binding and catalysis6,7, and when exposed to reducing conditions at sufficiently high temperatures, even oxide-anchored single-atom catalysts eventually sinter4,8,9. Here we show that the beneficial effects of anchoring can be enhanced by confining the atomically dispersed metal atoms on oxide nanoclusters or ‘nanoglues’, which themselves are dispersed and immobilized on a robust, high-surface-area support. We demonstrate the strategy by grafting isolated and defective CeOx nanoglue islands onto high-surface-area SiO2; the nanoglue islands then each host on average one Pt atom. We find that the Pt atoms remain dispersed under both oxidizing and reducing environments at high temperatures, and that the activated catalyst exhibits markedly increased activity for CO oxidation. We attribute the improved stability under reducing conditions to the support structure and the much stronger affinity of Pt atoms for CeOx than for SiO2, which ensures the Pt atoms can move but remain confined to their respective nanoglue islands. The strategy of using functional nanoglues to confine atomically dispersed metals and simultaneously enhance their reactivity is general, and we anticipate that it will take single-atom catalysts a step closer to practical applications.

Suggested Citation

  • Xu Li & Xavier Isidro Pereira-Hernández & Yizhen Chen & Jia Xu & Jiankang Zhao & Chih-Wen Pao & Chia-Yu Fang & Jie Zeng & Yong Wang & Bruce C. Gates & Jingyue Liu, 2022. "Functional CeOx nanoglues for robust atomically dispersed catalysts," Nature, Nature, vol. 611(7935), pages 284-288, November.
  • Handle: RePEc:nat:nature:v:611:y:2022:i:7935:d:10.1038_s41586-022-05251-6
    DOI: 10.1038/s41586-022-05251-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05251-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05251-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamei Fan & Rongtan Li & Beibei Wang & Xiaohui Feng & Xiangze Du & Chengxiang Liu & Fei Wang & Conghui Liu & Cui Dong & Yanxiao Ning & Rentao Mu & Qiang Fu, 2024. "Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yong Yin & Bingcheng Luo & Kezhi Li & Benjamin M. Moskowitz & Bar Mosevizky Lis & Israel E. Wachs & Minghui Zhu & Ye Sun & Tianle Zhu & Xiang Li, 2024. "Plasma-assisted manipulation of vanadia nanoclusters for efficient selective catalytic reduction of NOx," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:611:y:2022:i:7935:d:10.1038_s41586-022-05251-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.