IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v599y2021i7885d10.1038_s41586-021-03979-1.html
   My bibliography  Save this article

Excitons and emergent quantum phenomena in stacked 2D semiconductors

Author

Listed:
  • Nathan P. Wilson

    (University of Washington
    Technical University of Munich
    Munich Centre for Quantum Science and Technology)

  • Wang Yao

    (University of Hong Kong
    HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong)

  • Jie Shan

    (Cornell University)

  • Xiaodong Xu

    (University of Washington
    University of Washington)

Abstract

The design and control of material interfaces is a foundational approach to realize technologically useful effects and engineer material properties. This is especially true for two-dimensional (2D) materials, where van der Waals stacking allows disparate materials to be freely stacked together to form highly customizable interfaces. This has underpinned a recent wave of discoveries based on excitons in stacked double layers of transition metal dichalcogenides (TMDs), the archetypal family of 2D semiconductors. In such double-layer structures, the elegant interplay of charge, spin and moiré superlattice structure with many-body effects gives rise to diverse excitonic phenomena and correlated physics. Here we review some of the recent discoveries that highlight the versatility of TMD double layers to explore quantum optics and many-body effects. We identify outstanding challenges in the field and present a roadmap for unlocking the full potential of excitonic physics in TMD double layers and beyond, such as incorporating newly discovered ferroelectric and magnetic materials to engineer symmetries and add a new level of control to these remarkable engineered materials.

Suggested Citation

  • Nathan P. Wilson & Wang Yao & Jie Shan & Xiaodong Xu, 2021. "Excitons and emergent quantum phenomena in stacked 2D semiconductors," Nature, Nature, vol. 599(7885), pages 383-392, November.
  • Handle: RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-03979-1
    DOI: 10.1038/s41586-021-03979-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03979-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03979-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Hanlin Fang & Qiaoling Lin & Yi Zhang & Joshua Thompson & Sanshui Xiao & Zhipei Sun & Ermin Malic & Saroj P. Dash & Witlef Wieczorek, 2023. "Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Faran Zhou & Kyle Hwangbo & Qi Zhang & Chong Wang & Lingnan Shen & Jiawei Zhang & Qianni Jiang & Alfred Zong & Yifan Su & Marc Zajac & Youngjun Ahn & Donald A. Walko & Richard D. Schaller & Jiun-Haw C, 2022. "Dynamical criticality of spin-shear coupling in van der Waals antiferromagnets," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Raul Perea-Causin & Samuel Brem & Fabian Buchner & Yao Lu & Kenji Watanabe & Takashi Taniguchi & John M. Lupton & Kai-Qiang Lin & Ermin Malic, 2024. "Electrically tunable layer-hybridized trions in doped WSe2 bilayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Sara A. López-Paz & Zurab Guguchia & Vladimir Y. Pomjakushin & Catherine Witteveen & Antonio Cervellino & Hubertus Luetkens & Nicola Casati & Alberto F. Morpurgo & Fabian O. von Rohr, 2022. "Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-03979-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.