IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v595y2021i7867d10.1038_s41586-021-03707-9.html
   My bibliography  Save this article

A metabolomics pipeline for the mechanistic interrogation of the gut microbiome

Author

Listed:
  • Shuo Han

    (Stanford University School of Medicine)

  • Will Treuren

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Curt R. Fischer

    (ChEM-H, Stanford University
    Chan Zuckerberg Biohub)

  • Bryan D. Merrill

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Brian C. DeFelice

    (Chan Zuckerberg Biohub)

  • Juan M. Sanchez

    (Chan Zuckerberg Biohub)

  • Steven K. Higginbottom

    (Stanford University School of Medicine)

  • Leah Guthrie

    (Stanford University School of Medicine)

  • Lalla A. Fall

    (ChEM-H, Stanford University
    Stanford University School of Medicine)

  • Dylan Dodd

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Michael A. Fischbach

    (Chan Zuckerberg Biohub
    Stanford University)

  • Justin L. Sonnenburg

    (Stanford University School of Medicine
    Chan Zuckerberg Biohub
    Center for Human Microbiome Studies)

Abstract

Gut microorganisms modulate host phenotypes and are associated with numerous health effects in humans, ranging from host responses to cancer immunotherapy to metabolic disease and obesity. However, difficulty in accurate and high-throughput functional analysis of human gut microorganisms has hindered efforts to define mechanistic connections between individual microbial strains and host phenotypes. One key way in which the gut microbiome influences host physiology is through the production of small molecules1–3, yet progress in elucidating this chemical interplay has been hindered by limited tools calibrated to detect the products of anaerobic biochemistry in the gut. Here we construct a microbiome-focused, integrated mass-spectrometry pipeline to accelerate the identification of microbiota-dependent metabolites in diverse sample types. We report the metabolic profiles of 178 gut microorganism strains using our library of 833 metabolites. Using this metabolomics resource, we establish deviations in the relationships between phylogeny and metabolism, use machine learning to discover a previously undescribed type of metabolism in Bacteroides, and reveal candidate biochemical pathways using comparative genomics. Microbiota-dependent metabolites can be detected in diverse biological fluids from gnotobiotic and conventionally colonized mice and traced back to the corresponding metabolomic profiles of cultured bacteria. Collectively, our microbiome-focused metabolomics pipeline and interactive metabolomics profile explorer are a powerful tool for characterizing microorganisms and interactions between microorganisms and their host.

Suggested Citation

  • Shuo Han & Will Treuren & Curt R. Fischer & Bryan D. Merrill & Brian C. DeFelice & Juan M. Sanchez & Steven K. Higginbottom & Leah Guthrie & Lalla A. Fall & Dylan Dodd & Michael A. Fischbach & Justin , 2021. "A metabolomics pipeline for the mechanistic interrogation of the gut microbiome," Nature, Nature, vol. 595(7867), pages 415-420, July.
  • Handle: RePEc:nat:nature:v:595:y:2021:i:7867:d:10.1038_s41586-021-03707-9
    DOI: 10.1038/s41586-021-03707-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03707-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03707-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kali M. Pruss & Haoqing Chen & Yuanyuan Liu & William Treuren & Steven K. Higginbottom & John B. Jarman & Curt R. Fischer & Justin Mak & Beverly Wong & Tina M. Cowan & Michael A. Fischbach & Justin L., 2023. "Host-microbe co-metabolism via MCAD generates circulating metabolites including hippuric acid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Qi Zhao & Man-Yun Dai & Ruo-Yue Huang & Jing-Yi Duan & Ting Zhang & Wei-Min Bao & Jing-Yi Zhang & Shao-Qiang Gui & Shu-Min Xia & Cong-Ting Dai & Ying-Mei Tang & Frank J. Gonzalez & Fei Li, 2023. "Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Juan Salazar & Pablo Durán & María P. Díaz & Maricarmen Chacín & Raquel Santeliz & Edgardo Mengual & Emma Gutiérrez & Xavier León & Andrea Díaz & Marycarlota Bernal & Daniel Escalona & Luis Alberto Pa, 2023. "Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator," IJERPH, MDPI, vol. 20(10), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:595:y:2021:i:7867:d:10.1038_s41586-021-03707-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.