IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v583y2020i7816d10.1038_s41586-020-2464-9.html
   My bibliography  Save this article

Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst

Author

Listed:
  • Tian-Nan Ye

    (Tokyo Institute of Technology)

  • Sang-Won Park

    (Tokyo Institute of Technology)

  • Yangfan Lu

    (Tokyo Institute of Technology)

  • Jiang Li

    (Tokyo Institute of Technology)

  • Masato Sasase

    (Tokyo Institute of Technology)

  • Masaaki Kitano

    (Tokyo Institute of Technology
    Japan Science and Technology Agency)

  • Tomofumi Tada

    (Tokyo Institute of Technology)

  • Hideo Hosono

    (Tokyo Institute of Technology)

Abstract

Ammonia (NH3) is pivotal to the fertilizer industry and one of the most commonly produced chemicals1. The direct use of atmospheric nitrogen (N2) had been challenging, owing to its large bond energy (945 kilojoules per mole)2,3, until the development of the Haber–Bosch process. Subsequently, many strategies have been explored to reduce the activation barrier of the N≡N bond and make the process more efficient. These include using alkali and alkaline earth metal oxides as promoters to boost the performance of traditional iron- and ruthenium-based catalysts4–6 via electron transfer from the promoters to the antibonding bonds of N2 through transition metals7,8. An electride support further lowers the activation barrier because its low work function and high electron density enhance electron transfer to transition metals9,10. This strategy has facilitated ammonia synthesis from N2 dissociation11 and enabled catalytic operation under mild conditions; however, it requires the use of ruthenium, which is expensive. Alternatively, it has been shown that nitrides containing surface nitrogen vacancies can activate N2 (refs. 12–15). Here we report that nickel-loaded lanthanum nitride (LaN) enables stable and highly efficient ammonia synthesis, owing to a dual-site mechanism that avoids commonly encountered scaling relations. Kinetic and isotope-labelling experiments, as well as density functional theory calculations, confirm that nitrogen vacancies are generated on LaN with low formation energy, and efficiently bind and activate N2. In addition, the nickel metal loaded onto the nitride dissociates H2. The use of distinct sites for activating the two reactants, and the synergy between them, results in the nickel-loaded LaN catalyst exhibiting an activity that far exceeds that of more conventional cobalt- and nickel-based catalysts, and that is comparable to that of ruthenium-based catalysts. Our results illustrate the potential of using vacancy sites in reaction cycles, and introduce a design concept for catalysts for ammonia synthesis, using naturally abundant elements.

Suggested Citation

  • Tian-Nan Ye & Sang-Won Park & Yangfan Lu & Jiang Li & Masato Sasase & Masaaki Kitano & Tomofumi Tada & Hideo Hosono, 2020. "Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst," Nature, Nature, vol. 583(7816), pages 391-395, July.
  • Handle: RePEc:nat:nature:v:583:y:2020:i:7816:d:10.1038_s41586-020-2464-9
    DOI: 10.1038/s41586-020-2464-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2464-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2464-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
    2. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Chen, Chunchao & Ji, Rui & Xia, Xiaoyong & Jin, Liujun & Deng, Kaiyuan & Xu, Qingfeng & Lu, Jianmei, 2024. "Dispersed Bi2S3 site in a porphyrin-based metal–organic framework for photocatalytic nitrogen fixation," Applied Energy, Elsevier, vol. 357(C).
    4. Sun, Shangcong & Jiang, Qiuqiao & Zhao, Dongyue & Cao, Tiantian & Sha, Hao & Zhang, Chuankun & Song, Haitao & Da, Zhijian, 2022. "Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Huihuang Fang & Simson Wu & Tugce Ayvali & Jianwei Zheng & Joshua Fellowes & Ping-Luen Ho & Kwan Chee Leung & Alexander Large & Georg Held & Ryuichi Kato & Kazu Suenaga & Yves Ira A. Reyes & Ho Viet T, 2023. "Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Pei Xiong & Zhihang Xu & Tai-Sing Wu & Tong Yang & Qiong Lei & Jiangtong Li & Guangchao Li & Ming Yang & Yun-Liang Soo & Robert David Bennett & Shu Ping Lau & Shik Chi Edman Tsang & Ye Zhu & Molly Men, 2024. "Synthesis of core@shell catalysts guided by Tammann temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Huize Wang & Ranga Rohit Seemakurthi & Gao-Feng Chen & Volker Strauss & Oleksandr Savateev & Guangtong Hai & Liangxin Ding & Núria López & Haihui Wang & Markus Antonietti, 2023. "Laser-induced nitrogen fixation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Zichuang Li & Yangfan Lu & Jiang Li & Miao Xu & Yanpeng Qi & Sang-Won Park & Masaaki Kitano & Hideo Hosono & Jie-Sheng Chen & Tian-Nan Ye, 2023. "Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Ang Cao & Vanessa J. Bukas & Vahid Shadravan & Zhenbin Wang & Hao Li & Jakob Kibsgaard & Ib Chorkendorff & Jens K. Nørskov, 2022. "A spin promotion effect in catalytic ammonia synthesis," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Jong-Hoon Kim & Tian-Yi Dai & Mihyun Yang & Jeong-Min Seo & Jae Seong Lee & Do Hyung Kweon & Xing-You Lang & Kyuwook Ihm & Tae Joo Shin & Gao-Feng Han & Qing Jiang & Jong-Beom Baek, 2023. "Achieving volatile potassium promoted ammonia synthesis via mechanochemistry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:583:y:2020:i:7816:d:10.1038_s41586-020-2464-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.