IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v580y2020i7805d10.1038_s41586-020-2214-z.html
   My bibliography  Save this article

The mutational landscape of normal human endometrial epithelium

Author

Listed:
  • Luiza Moore

    (Wellcome Sanger Institute
    Cambridge University Hospitals NHS Foundation Trust)

  • Daniel Leongamornlert

    (Wellcome Sanger Institute)

  • Tim H. H. Coorens

    (Wellcome Sanger Institute)

  • Mathijs A. Sanders

    (Wellcome Sanger Institute
    Erasmus University Medical Center)

  • Peter Ellis

    (Wellcome Sanger Institute
    Inivata Ltd)

  • Stefan C. Dentro

    (Wellcome Sanger Institute
    European Bioinformatics Institute (EMBL-EBI))

  • Kevin J. Dawson

    (Wellcome Sanger Institute)

  • Tim Butler

    (Wellcome Sanger Institute)

  • Raheleh Rahbari

    (Wellcome Sanger Institute)

  • Thomas J. Mitchell

    (Wellcome Sanger Institute)

  • Francesco Maura

    (Wellcome Sanger Institute
    Memorial Sloan Kettering Cancer Center)

  • Jyoti Nangalia

    (Wellcome Sanger Institute)

  • Patrick S. Tarpey

    (Wellcome Sanger Institute)

  • Simon F. Brunner

    (Wellcome Sanger Institute)

  • Henry Lee-Six

    (Wellcome Sanger Institute)

  • Yvette Hooks

    (Wellcome Sanger Institute)

  • Sarah Moody

    (Wellcome Sanger Institute)

  • Krishnaa T. Mahbubani

    (University of Cambridge
    Cambridge NIHR Biomedical Research Centre
    University of Cambridge)

  • Mercedes Jimenez-Linan

    (Cambridge University Hospitals NHS Foundation Trust)

  • Jan J. Brosens

    (University of Warwick)

  • Christine A. Iacobuzio-Donahue

    (Memorial Sloan Kettering Cancer Center
    Memorial Sloan Kettering Cancer Center)

  • Inigo Martincorena

    (Wellcome Sanger Institute)

  • Kourosh Saeb-Parsy

    (University of Cambridge
    Cambridge NIHR Biomedical Research Centre)

  • Peter J. Campbell

    (Wellcome Sanger Institute)

  • Michael R. Stratton

    (Wellcome Sanger Institute)

Abstract

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry ‘driver’ mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues—perhaps shaped by differences in their structure and physiology—and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.

Suggested Citation

  • Luiza Moore & Daniel Leongamornlert & Tim H. H. Coorens & Mathijs A. Sanders & Peter Ellis & Stefan C. Dentro & Kevin J. Dawson & Tim Butler & Raheleh Rahbari & Thomas J. Mitchell & Francesco Maura & , 2020. "The mutational landscape of normal human endometrial epithelium," Nature, Nature, vol. 580(7805), pages 640-646, April.
  • Handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2214-z
    DOI: 10.1038/s41586-020-2214-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2214-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2214-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xabier Vergara & Anna G. Manjón & Marcel Haas & Ben Morris & Ruben Schep & Christ Leemans & Anoek Friskes & Roderick L. Beijersbergen & Mathijs A. Sanders & René H. Medema & Bas Steensel, 2024. "Widespread chromatin context-dependencies of DNA double-strand break repair proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Maisa Pinheiro & Nicolas Wentzensen & Michael Dean & Meredith Yeager & Zigui Chen & Amulya Shastry & Joseph F. Boland & Sara Bass & Laurie Burdett & Thomas Lorey & Sambit Mishra & Philip E. Castle & M, 2024. "Somatic mutations in 3929 HPV positive cervical cells associated with infection outcome and HPV type," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Bernard C. H. Lee & Philip S. Robinson & Tim H. H. Coorens & Helen H. N. Yan & Sigurgeir Olafsson & Henry Lee-Six & Mathijs A. Sanders & Hoi Cheong Siu & James Hewinson & Sarah S. K. Yue & Wai Yin Tsu, 2022. "Mutational landscape of normal epithelial cells in Lynch Syndrome patients," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Philip S. Robinson & Laura E. Thomas & Federico Abascal & Hyunchul Jung & Luke M. R. Harvey & Hannah D. West & Sigurgeir Olafsson & Bernard C. H. Lee & Tim H. H. Coorens & Henry Lee-Six & Laura Butlin, 2022. "Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Tianyu Zhu & Huige Tong & Zhaozhen Du & Stephan Beck & Andrew E. Teschendorff, 2024. "An improved epigenetic counter to track mitotic age in normal and precancerous tissues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Heather E. Machado & Nina F. Øbro & Nicholas Williams & Shengjiang Tan & Ahmed Z. Boukerrou & Megan Davies & Miriam Belmonte & Emily Mitchell & E. Joanna Baxter & Nicole Mende & Anna Clay & Philip Anc, 2023. "Convergent somatic evolution commences in utero in a germline ribosomopathy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Kasumi Murai & Stefan Dentro & Swee Hoe Ong & Roshan Sood & David Fernandez-Antoran & Albert Herms & Vasiliki Kostiou & Irina Abnizova & Benjamin A. Hall & Moritz Gerstung & Philip H. Jones, 2022. "p53 mutation in normal esophagus promotes multiple stages of carcinogenesis but is constrained by clonal competition," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Biancastella Cereser & Angela Yiu & Neha Tabassum & Lisa Del Bel Belluz & Sladjana Zagorac & Kenneth Russell Zapanta Ancheta & Rongrong Zhong & Cristian Miere & Alicia Rose Jeffries-Jones & Nina Moder, 2023. "The mutational landscape of the adult healthy parous and nulliparous human breast," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Manako Yamaguchi & Hirofumi Nakaoka & Kazuaki Suda & Kosuke Yoshihara & Tatsuya Ishiguro & Nozomi Yachida & Kyota Saito & Haruka Ueda & Kentaro Sugino & Yutaro Mori & Kaoru Yamawaki & Ryo Tamura & Sun, 2022. "Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2214-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.