IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7800d10.1038_s41586-020-2122-2.html
   My bibliography  Save this article

Chiral superconductivity in heavy-fermion metal UTe2

Author

Listed:
  • Lin Jiao

    (University of Illinois Urbana-Champaign)

  • Sean Howard

    (University of Illinois Urbana-Champaign)

  • Sheng Ran

    (National Institute of Standards and Technology
    University of Maryland)

  • Zhenyu Wang

    (University of Illinois Urbana-Champaign)

  • Jorge Olivares Rodriguez

    (University of Illinois Urbana-Champaign)

  • Manfred Sigrist

    (ETH Zurich)

  • Ziqiang Wang

    (Boston College)

  • Nicholas P. Butch

    (National Institute of Standards and Technology
    University of Maryland)

  • Vidya Madhavan

    (University of Illinois Urbana-Champaign)

Abstract

Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction1. An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes2,3. However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity4. Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin5. We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.

Suggested Citation

  • Lin Jiao & Sean Howard & Sheng Ran & Zhenyu Wang & Jorge Olivares Rodriguez & Manfred Sigrist & Ziqiang Wang & Nicholas P. Butch & Vidya Madhavan, 2020. "Chiral superconductivity in heavy-fermion metal UTe2," Nature, Nature, vol. 579(7800), pages 523-527, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2122-2
    DOI: 10.1038/s41586-020-2122-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2122-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2122-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toni Helm & Motoi Kimata & Kenta Sudo & Atsuhiko Miyata & Julia Stirnat & Tobias Förster & Jacob Hornung & Markus König & Ilya Sheikin & Alexandre Pourret & Gerard Lapertot & Dai Aoki & Georg Knebel &, 2024. "Field-induced compensation of magnetic exchange as the possible origin of reentrant superconductivity in UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. I. Silber & S. Mathimalar & I. Mangel & A. K. Nayak & O. Green & N. Avraham & H. Beidenkopf & I. Feldman & A. Kanigel & A. Klein & M. Goldstein & A. Banerjee & E. Sela & Y. Dagan, 2024. "Two-component nematic superconductivity in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    3. M. C. Rahn & K. Kummer & A. Hariki & K.-H. Ahn & J. Kuneš & A. Amorese & J. D. Denlinger & D.-H. Lu & M. Hashimoto & E. Rienks & M. Valvidares & F. Haslbeck & D. D. Byler & K. J. McClellan & E. D. Bau, 2022. "Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. W. Simeth & Z. Wang & E. A. Ghioldi & D. M. Fobes & A. Podlesnyak & N. H. Sung & E. D. Bauer & J. Lass & S. Flury & J. Vonka & D. G. Mazzone & C. Niedermayer & Yusuke Nomura & Ryotaro Arita & C. D. Ba, 2023. "A microscopic Kondo lattice model for the heavy fermion antiferromagnet CeIn3," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. A. G. Eaton & T. I. Weinberger & N. J. M. Popiel & Z. Wu & A. J. Hickey & A. Cabala & J. Pospíšil & J. Prokleška & T. Haidamak & G. Bastien & P. Opletal & H. Sakai & Y. Haga & R. Nowell & S. M. Benjam, 2024. "Quasi-2D Fermi surface in the anomalous superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Corey E. Frank & Sylvia K. Lewin & Gicela Saucedo Salas & Peter Czajka & Ian M. Hayes & Hyeok Yoon & Tristin Metz & Johnpierre Paglione & John Singleton & Nicholas P. Butch, 2024. "Orphan high field superconductivity in non-superconducting uranium ditelluride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Alexander LaFleur & Hong Li & Corey E. Frank & Muxian Xu & Siyu Cheng & Ziqiang Wang & Nicholas P. Butch & Ilija Zeljkovic, 2024. "Inhomogeneous high temperature melting and decoupling of charge density waves in spin-triplet superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Kota Ishihara & Masaki Roppongi & Masayuki Kobayashi & Kumpei Imamura & Yuta Mizukami & Hironori Sakai & Petr Opletal & Yoshifumi Tokiwa & Yoshinori Haga & Kenichiro Hashimoto & Takasada Shibauchi, 2023. "Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2122-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.