IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44110-4.html
   My bibliography  Save this article

Quasi-2D Fermi surface in the anomalous superconductor UTe2

Author

Listed:
  • A. G. Eaton

    (University of Cambridge)

  • T. I. Weinberger

    (University of Cambridge)

  • N. J. M. Popiel

    (University of Cambridge)

  • Z. Wu

    (University of Cambridge)

  • A. J. Hickey

    (University of Cambridge)

  • A. Cabala

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

  • J. Pospíšil

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

  • J. Prokleška

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

  • T. Haidamak

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

  • G. Bastien

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

  • P. Opletal

    (Japan Atomic Energy Agency)

  • H. Sakai

    (Japan Atomic Energy Agency)

  • Y. Haga

    (Japan Atomic Energy Agency)

  • R. Nowell

    (National High Magnetic Field Laboratory)

  • S. M. Benjamin

    (National High Magnetic Field Laboratory)

  • V. Sechovský

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

  • G. G. Lonzarich

    (University of Cambridge)

  • F. M. Grosche

    (University of Cambridge)

  • M. Vališka

    (Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics)

Abstract

The heavy fermion paramagnet UTe2 exhibits numerous characteristics of spin-triplet superconductivity. Efforts to understand the microscopic details of this exotic superconductivity have been impeded by uncertainty regarding the underlying electronic structure. Here we directly probe the Fermi surface of UTe2 by measuring magnetic quantum oscillations in pristine quality crystals. We find an angular profile of quantum oscillatory frequency and amplitude that is characteristic of a quasi-2D Fermi surface, which we find is well described by two cylindrical Fermi sheets of electron- and hole-type respectively. Additionally, we find that both cylindrical Fermi sheets possess considerable undulation but negligible small-scale corrugation, which may allow for their near-nesting and therefore promote magnetic fluctuations that enhance the triplet pairing mechanism. Importantly, we find no evidence for the presence of any 3D Fermi surface sections. Our results place strong constraints on the possible symmetry of the superconducting order parameter in UTe2.

Suggested Citation

  • A. G. Eaton & T. I. Weinberger & N. J. M. Popiel & Z. Wu & A. J. Hickey & A. Cabala & J. Pospíšil & J. Prokleška & T. Haidamak & G. Bastien & P. Opletal & H. Sakai & Y. Haga & R. Nowell & S. M. Benjam, 2024. "Quasi-2D Fermi surface in the anomalous superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44110-4
    DOI: 10.1038/s41467-023-44110-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44110-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44110-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. S. Saxena & P. Agarwal & K. Ahilan & F. M. Grosche & R. K. W. Haselwimmer & M. J. Steiner & E. Pugh & I. R. Walker & S. R. Julian & P. Monthoux & G. G. Lonzarich & A. Huxley & I. Sheikin & D. Brait, 2000. "Superconductivity on the border of itinerant-electron ferromagnetism in UGe2," Nature, Nature, vol. 406(6796), pages 587-592, August.
    2. Lin Jiao & Sean Howard & Sheng Ran & Zhenyu Wang & Jorge Olivares Rodriguez & Manfred Sigrist & Ziqiang Wang & Nicholas P. Butch & Vidya Madhavan, 2020. "Chiral superconductivity in heavy-fermion metal UTe2," Nature, Nature, vol. 579(7800), pages 523-527, March.
    3. P. Monthoux & D. Pines & G. G. Lonzarich, 2007. "Superconductivity without phonons," Nature, Nature, vol. 450(7173), pages 1177-1183, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Silber & S. Mathimalar & I. Mangel & A. K. Nayak & O. Green & N. Avraham & H. Beidenkopf & I. Feldman & A. Kanigel & A. Klein & M. Goldstein & A. Banerjee & E. Sela & Y. Dagan, 2024. "Two-component nematic superconductivity in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    2. Riseborough, Peter S., 2005. "The de Haas–van Alphen effect at a quantum critical point," Energy, Elsevier, vol. 30(6), pages 885-895.
    3. M. C. Rahn & K. Kummer & A. Hariki & K.-H. Ahn & J. Kuneš & A. Amorese & J. D. Denlinger & D.-H. Lu & M. Hashimoto & E. Rienks & M. Valvidares & F. Haslbeck & D. D. Byler & K. J. McClellan & E. D. Bau, 2022. "Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. P. T. Yang & Z. Y. Liu & K. Y. Chen & X. L. Liu & X. Zhang & Z. H. Yu & H. Zhang & J. P. Sun & Y. Uwatoko & X. L. Dong & K. Jiang & J. P. Hu & Y. F. Guo & B. S. Wang & J.-G. Cheng, 2022. "Pressured-induced superconducting phase with large upper critical field and concomitant enhancement of antiferromagnetic transition in EuTe2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Younsik Kim & Min-Seok Kim & Dongwook Kim & Minjae Kim & Minsoo Kim & Cheng-Maw Cheng & Joonyoung Choi & Saegyeol Jung & Donghui Lu & Jong Hyuk Kim & Soohyun Cho & Dongjoon Song & Dongjin Oh & Li Yu &, 2023. "Kondo interaction in FeTe and its potential role in the magnetic order," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kapcia, Konrad Jerzy & Murawski, Szymon & Kłobus, Waldemar & Robaszkiewicz, Stanisław, 2015. "Magnetic orderings and phase separations in a simple model of insulating systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 218-234.
    7. Jean-Yves Fortin & Pierrick Lample, 2021. "Itinerant fermions on dilute frustrated Ising lattices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    8. Corey E. Frank & Sylvia K. Lewin & Gicela Saucedo Salas & Peter Czajka & Ian M. Hayes & Hyeok Yoon & Tristin Metz & Johnpierre Paglione & John Singleton & Nicholas P. Butch, 2024. "Orphan high field superconductivity in non-superconducting uranium ditelluride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Kota Ishihara & Masaki Roppongi & Masayuki Kobayashi & Kumpei Imamura & Yuta Mizukami & Hironori Sakai & Petr Opletal & Yoshifumi Tokiwa & Yoshinori Haga & Kenichiro Hashimoto & Takasada Shibauchi, 2023. "Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Toni Helm & Motoi Kimata & Kenta Sudo & Atsuhiko Miyata & Julia Stirnat & Tobias Förster & Jacob Hornung & Markus König & Ilya Sheikin & Alexandre Pourret & Gerard Lapertot & Dai Aoki & Georg Knebel &, 2024. "Field-induced compensation of magnetic exchange as the possible origin of reentrant superconductivity in UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. W. Simeth & Z. Wang & E. A. Ghioldi & D. M. Fobes & A. Podlesnyak & N. H. Sung & E. D. Bauer & J. Lass & S. Flury & J. Vonka & D. G. Mazzone & C. Niedermayer & Yusuke Nomura & Ryotaro Arita & C. D. Ba, 2023. "A microscopic Kondo lattice model for the heavy fermion antiferromagnet CeIn3," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44110-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.