IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47090-1.html
   My bibliography  Save this article

Orphan high field superconductivity in non-superconducting uranium ditelluride

Author

Listed:
  • Corey E. Frank

    (National Institute of Standards and Technology
    University of Maryland)

  • Sylvia K. Lewin

    (National Institute of Standards and Technology
    University of Maryland)

  • Gicela Saucedo Salas

    (National Institute of Standards and Technology
    University of Maryland)

  • Peter Czajka

    (National Institute of Standards and Technology
    University of Maryland)

  • Ian M. Hayes

    (University of Maryland)

  • Hyeok Yoon

    (University of Maryland)

  • Tristin Metz

    (University of Maryland)

  • Johnpierre Paglione

    (University of Maryland
    Canadian Institute for Advanced Research)

  • John Singleton

    (Los Alamos National Laboratory)

  • Nicholas P. Butch

    (National Institute of Standards and Technology
    University of Maryland)

Abstract

Reentrant superconductivity is an uncommon phenomenon in which the destructive effects of magnetic field on superconductivity are mitigated, allowing a zero-resistance state to survive under conditions that would otherwise destroy it. Typically, the reentrant superconducting region derives from a zero-field parent superconducting phase. Here, we show that in UTe2 crystals extreme applied magnetic fields give rise to an unprecedented high-field superconductor that lacks a zero-field antecedent. This high-field orphan superconductivity exists at angles offset between 29o and 42o from the crystallographic b to c axes with applied fields between 37 T and 52 T. The stability of field-induced orphan superconductivity presented in this work defies both empirical precedent and theoretical explanation and demonstrates that high-field superconductivity can exist in an otherwise non-superconducting material.

Suggested Citation

  • Corey E. Frank & Sylvia K. Lewin & Gicela Saucedo Salas & Peter Czajka & Ian M. Hayes & Hyeok Yoon & Tristin Metz & Johnpierre Paglione & John Singleton & Nicholas P. Butch, 2024. "Orphan high field superconductivity in non-superconducting uranium ditelluride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47090-1
    DOI: 10.1038/s41467-024-47090-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47090-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47090-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lin Jiao & Sean Howard & Sheng Ran & Zhenyu Wang & Jorge Olivares Rodriguez & Manfred Sigrist & Ziqiang Wang & Nicholas P. Butch & Vidya Madhavan, 2020. "Chiral superconductivity in heavy-fermion metal UTe2," Nature, Nature, vol. 579(7800), pages 523-527, March.
    2. Toni Helm & Motoi Kimata & Kenta Sudo & Atsuhiko Miyata & Julia Stirnat & Tobias Förster & Jacob Hornung & Markus König & Ilya Sheikin & Alexandre Pourret & Gerard Lapertot & Dai Aoki & Georg Knebel &, 2024. "Field-induced compensation of magnetic exchange as the possible origin of reentrant superconductivity in UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Kota Ishihara & Masaki Roppongi & Masayuki Kobayashi & Kumpei Imamura & Yuta Mizukami & Hironori Sakai & Petr Opletal & Yoshifumi Tokiwa & Yoshinori Haga & Kenichiro Hashimoto & Takasada Shibauchi, 2023. "Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Silber & S. Mathimalar & I. Mangel & A. K. Nayak & O. Green & N. Avraham & H. Beidenkopf & I. Feldman & A. Kanigel & A. Klein & M. Goldstein & A. Banerjee & E. Sela & Y. Dagan, 2024. "Two-component nematic superconductivity in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    2. M. C. Rahn & K. Kummer & A. Hariki & K.-H. Ahn & J. Kuneš & A. Amorese & J. D. Denlinger & D.-H. Lu & M. Hashimoto & E. Rienks & M. Valvidares & F. Haslbeck & D. D. Byler & K. J. McClellan & E. D. Bau, 2022. "Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. A. G. Eaton & T. I. Weinberger & N. J. M. Popiel & Z. Wu & A. J. Hickey & A. Cabala & J. Pospíšil & J. Prokleška & T. Haidamak & G. Bastien & P. Opletal & H. Sakai & Y. Haga & R. Nowell & S. M. Benjam, 2024. "Quasi-2D Fermi surface in the anomalous superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Kota Ishihara & Masaki Roppongi & Masayuki Kobayashi & Kumpei Imamura & Yuta Mizukami & Hironori Sakai & Petr Opletal & Yoshifumi Tokiwa & Yoshinori Haga & Kenichiro Hashimoto & Takasada Shibauchi, 2023. "Chiral superconductivity in UTe2 probed by anisotropic low-energy excitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Toni Helm & Motoi Kimata & Kenta Sudo & Atsuhiko Miyata & Julia Stirnat & Tobias Förster & Jacob Hornung & Markus König & Ilya Sheikin & Alexandre Pourret & Gerard Lapertot & Dai Aoki & Georg Knebel &, 2024. "Field-induced compensation of magnetic exchange as the possible origin of reentrant superconductivity in UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. W. Simeth & Z. Wang & E. A. Ghioldi & D. M. Fobes & A. Podlesnyak & N. H. Sung & E. D. Bauer & J. Lass & S. Flury & J. Vonka & D. G. Mazzone & C. Niedermayer & Yusuke Nomura & Ryotaro Arita & C. D. Ba, 2023. "A microscopic Kondo lattice model for the heavy fermion antiferromagnet CeIn3," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47090-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.