IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7798d10.1038_s41586-020-2061-y.html
   My bibliography  Save this article

Current-driven magnetic domain-wall logic

Author

Listed:
  • Zhaochu Luo

    (ETH Zurich
    Paul Scherrer Institut)

  • Aleš Hrabec

    (ETH Zurich
    Paul Scherrer Institut
    ETH Zurich)

  • Trong Phuong Dao

    (ETH Zurich
    Paul Scherrer Institut
    ETH Zurich)

  • Giacomo Sala

    (ETH Zurich)

  • Simone Finizio

    (Paul Scherrer Institut)

  • Junxiao Feng

    (ETH Zurich)

  • Sina Mayr

    (ETH Zurich
    Paul Scherrer Institut)

  • Jörg Raabe

    (Paul Scherrer Institut)

  • Pietro Gambardella

    (ETH Zurich)

  • Laura J. Heyderman

    (ETH Zurich
    Paul Scherrer Institut)

Abstract

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal–oxide–semiconductor logic1–13. Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information1,3,14–16. Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii–Moriya interaction17–20, which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.

Suggested Citation

  • Zhaochu Luo & Aleš Hrabec & Trong Phuong Dao & Giacomo Sala & Simone Finizio & Junxiao Feng & Sina Mayr & Jörg Raabe & Pietro Gambardella & Laura J. Heyderman, 2020. "Current-driven magnetic domain-wall logic," Nature, Nature, vol. 579(7798), pages 214-218, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7798:d:10.1038_s41586-020-2061-y
    DOI: 10.1038/s41586-020-2061-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2061-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2061-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min-Gu Kang & Jong-Guk Choi & Jimin Jeong & Jae Yeol Park & Hyeon-Jong Park & Taehwan Kim & Taekhyeon Lee & Kab-Jin Kim & Kyoung-Whan Kim & Jung Hyun Oh & Duc Duong Viet & Jong-Ryul Jeong & Jong Min Y, 2021. "Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Jing Wang & Jing Ma & Houbing Huang & Ji Ma & Hasnain Mehdi Jafri & Yuanyuan Fan & Huayu Yang & Yue Wang & Mingfeng Chen & Di Liu & Jinxing Zhang & Yuan-Hua Lin & Long-Qing Chen & Di Yi & Ce-Wen Nan, 2022. "Ferroelectric domain-wall logic units," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Cheng-Hsiang Hsu & Miela J. Gross & Hannah Calzi Kleidermacher & Shehrin Sayed & Sayeef Salahuddin, 2024. "Tunable multistate field-free switching and ratchet effect by spin-orbit torque in canted ferrimagnetic alloy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Qianbiao Liu & Long Liu & Guozhong Xing & Lijun Zhu, 2024. "Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Sergey Zayko & Ofer Kfir & Michael Heigl & Michael Lohmann & Murat Sivis & Manfred Albrecht & Claus Ropers, 2021. "Ultrafast high-harmonic nanoscopy of magnetization dynamics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7798:d:10.1038_s41586-020-2061-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.