IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7797d10.1038_s41586-020-2020-7.html
   My bibliography  Save this article

Structural basis of energy transfer in Porphyridium purpureum phycobilisome

Author

Listed:
  • Jianfei Ma

    (Tsinghua University)

  • Xin You

    (Tsinghua University)

  • Shan Sun

    (Tsinghua University)

  • Xiaoxiao Wang

    (Chinese Academy of Sciences)

  • Song Qin

    (Chinese Academy of Sciences)

  • Sen-Fang Sui

    (Tsinghua University)

Abstract

Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments1. Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae2–4, although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga Porphyridium purpureum. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of Griffithsia pacifica5 enabled us to build an accurate atomic model of the P. purpureum phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.

Suggested Citation

  • Jianfei Ma & Xin You & Shan Sun & Xiaoxiao Wang & Song Qin & Sen-Fang Sui, 2020. "Structural basis of energy transfer in Porphyridium purpureum phycobilisome," Nature, Nature, vol. 579(7797), pages 146-151, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7797:d:10.1038_s41586-020-2020-7
    DOI: 10.1038/s41586-020-2020-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2020-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2020-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Mao & Xingyue Li & Zhenhua Li & Liangliang Shen & Xiaoyi Li & Yanyan Yang & Wenda Wang & Tingyun Kuang & Jian-Ren Shen & Guangye Han, 2024. "Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Lvqin Zheng & Zhengdong Zhang & Hongrui Wang & Zhenggao Zheng & Jiayu Wang & Heyuan Liu & Hailong Chen & Chunxia Dong & Guopeng Wang & Yuxiang Weng & Ning Gao & Jindong Zhao, 2023. "Cryo-EM and femtosecond spectroscopic studies provide mechanistic insight into the energy transfer in CpcL-phycobilisomes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Han-Wei Jiang & Hsiang-Yi Wu & Chun-Hsiung Wang & Cheng-Han Yang & Jui-Tse Ko & Han-Chen Ho & Ming-Daw Tsai & Donald A. Bryant & Fay-Wei Li & Meng-Chiao Ho & Ming-Yang Ho, 2023. "A structure of the relict phycobilisome from a thylakoid-free cyanobacterium," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Keisuke Kawakami & Tasuku Hamaguchi & Yuu Hirose & Daisuke Kosumi & Makoto Miyata & Nobuo Kamiya & Koji Yonekura, 2022. "Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Vincenzo Mascoli & Ahmad Farhan Bhatti & Luca Bersanini & Herbert Amerongen & Roberta Croce, 2022. "The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Shivam Yadav & Martin Centola & Mathilda Glaesmann & Denys Pogoryelov & Roman Ladig & Mike Heilemann & L. C. Rai & Özkan Yildiz & Enrico Schleiff, 2022. "Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Xing Zhang & Yanan Xiao & Xin You & Shan Sun & Sen-Fang Sui, 2024. "In situ structural determination of cyanobacterial phycobilisome–PSII supercomplex by STAgSPA strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7797:d:10.1038_s41586-020-2020-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.