IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7783d10.1038_s41586-019-1749-3.html
   My bibliography  Save this article

High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast

Author

Listed:
  • Alex N. Nguyen Ba

    (Harvard University)

  • Ivana Cvijović

    (Harvard University
    Harvard University
    Harvard University
    Harvard University)

  • José I. Rojas Echenique

    (Harvard University)

  • Katherine R. Lawrence

    (Harvard University
    Massachusetts Institute of Technology)

  • Artur Rego-Costa

    (Harvard University)

  • Xianan Liu

    (Stanford University
    Stony Brook University)

  • Sasha F. Levy

    (Stanford University
    Stony Brook University)

  • Michael M. Desai

    (Harvard University
    Harvard University
    Harvard University
    Harvard University)

Abstract

In rapidly adapting asexual populations, including many microbial pathogens and viruses, numerous mutant lineages often compete for dominance within the population1–5. These complex evolutionary dynamics determine the outcomes of adaptation, but have been difficult to observe directly. Previous studies have used whole-genome sequencing to follow molecular adaptation6–10; however, these methods have limited resolution in microbial populations. Here we introduce a renewable barcoding system to observe evolutionary dynamics at high resolution in laboratory budding yeast. We find nested patterns of interference and hitchhiking even at low frequencies. These events are driven by the continuous appearance of new mutations that modify the fates of existing lineages before they reach substantial frequencies. We observe how the distribution of fitness within the population changes over time, and find a travelling wave of adaptation that has been predicted by theory11–17. We show that clonal competition creates a dynamical ‘rich-get-richer’ effect: fitness advantages that are acquired early in evolution drive clonal expansions, which increase the chances of acquiring future mutations. However, less-fit lineages also routinely leapfrog over strains of higher fitness. Our results demonstrate that this combination of factors, which is not accounted for in existing models of evolutionary dynamics, is critical in determining the rate, predictability and molecular basis of adaptation.

Suggested Citation

  • Alex N. Nguyen Ba & Ivana Cvijović & José I. Rojas Echenique & Katherine R. Lawrence & Artur Rego-Costa & Xianan Liu & Sasha F. Levy & Michael M. Desai, 2019. "High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast," Nature, Nature, vol. 575(7783), pages 494-499, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7783:d:10.1038_s41586-019-1749-3
    DOI: 10.1038/s41586-019-1749-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1749-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1749-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serhii Aif & Nico Appold & Lucas Kampman & Oskar Hallatschek & Jona Kayser, 2022. "Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Marie Rescan & Daphné Grulois & Enrique Ortega Aboud & Pierre de Villemereuil & Luis-Miguel Chevin, 2021. "Predicting population genetic change in an autocorrelated random environment: Insights from a large automated experiment," PLOS Genetics, Public Library of Science, vol. 17(6), pages 1-23, June.
    3. Sébastien Boyer & Lucas Hérissant & Gavin Sherlock, 2021. "Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-27, January.
    4. Alief Moulana & Thomas Dupic & Angela M. Phillips & Jeffrey Chang & Serafina Nieves & Anne A. Roffler & Allison J. Greaney & Tyler N. Starr & Jesse D. Bloom & Michael M. Desai, 2022. "Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Daniel P. G. H. Wong & Benjamin H. Good, 2024. "Quantifying the adaptive landscape of commensal gut bacteria using high-resolution lineage tracking," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7783:d:10.1038_s41586-019-1749-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.