IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7720d10.1038_s41586-018-0424-4.html
   My bibliography  Save this article

Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage

Author

Listed:
  • Vincent Humphrey

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Jakob Zscheischler

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Philippe Ciais

    (Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ)

  • Lukas Gudmundsson

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Stephen Sitch

    (College of Life and Environmental Sciences, University of Exeter)

  • Sonia I. Seneviratne

    (Institute for Atmospheric and Climate Science, ETH Zurich)

Abstract

Land ecosystems absorb on average 30 per cent of anthropogenic carbon dioxide (CO2) emissions, thereby slowing the increase of CO2 concentration in the atmosphere1. Year-to-year variations in the atmospheric CO2 growth rate are mostly due to fluctuating carbon uptake by land ecosystems1. The sensitivity of these fluctuations to changes in tropical temperature has been well documented2–6, but identifying the role of global water availability has proved to be elusive. So far, the only usable proxies for water availability have been time-lagged precipitation anomalies and drought indices3–5, owing to a lack of direct observations. Here, we use recent observations of terrestrial water storage changes derived from satellite gravimetry7 to investigate terrestrial water effects on carbon cycle variability at global to regional scales. We show that the CO2 growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO2 growth. We demonstrate that this global relationship is independent of known temperature effects and is underestimated in current carbon cycle models. Our results indicate that interannual fluctuations in terrestrial water storage strongly affect the terrestrial carbon sink and highlight the importance of the interactions between the water and carbon cycles.

Suggested Citation

  • Vincent Humphrey & Jakob Zscheischler & Philippe Ciais & Lukas Gudmundsson & Stephen Sitch & Sonia I. Seneviratne, 2018. "Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage," Nature, Nature, vol. 560(7720), pages 628-631, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7720:d:10.1038_s41586-018-0424-4
    DOI: 10.1038/s41586-018-0424-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0424-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0424-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kai Wang & Ana Bastos & Philippe Ciais & Xuhui Wang & Christian Rödenbeck & Pierre Gentine & Frédéric Chevallier & Vincent W. Humphrey & Chris Huntingford & Michael O’Sullivan & Sonia I. Seneviratne, 2022. "Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Peijun Li & Yuanyuan Zha & Liangsheng Shi & Hua Zhong & Chak-Hau Michael Tso & Mousong Wu, 2022. "Assessing the Global Relationships Between Teleconnection Factors and Terrestrial Water Storage Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 119-133, January.
    4. Yuan Su & Shupeng Zhang, 2024. "Optimizing Parameters in the Common Land Model by Using Gravity Recovery and Climate Experiment Satellite Observations," Land, MDPI, vol. 13(4), pages 1-15, April.
    5. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. He, Bohao & Jia, Biying & Zhao, Yanghe & Wang, Xu & Wei, Mao & Dietzel, Ranae, 2022. "Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    7. Panxing He & Yiyan Zeng & Ningfei Wang & Zhiming Han & Xiaoyu Meng & Tong Dong & Xiaoliang Ma & Shangqian Ma & Jun Ma & Zongjiu Sun, 2023. "Early Evidence That Soil Dryness Causes Widespread Decline in Grassland Productivity in China," Land, MDPI, vol. 12(2), pages 1-17, February.
    8. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7720:d:10.1038_s41586-018-0424-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.