IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p508-d1374938.html
   My bibliography  Save this article

Optimizing Parameters in the Common Land Model by Using Gravity Recovery and Climate Experiment Satellite Observations

Author

Listed:
  • Yuan Su

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China)

  • Shupeng Zhang

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China)

Abstract

Terrestrial water storage (TWS) is pivotal in understanding environmental dynamics, climate change, and human impacts. Despite the utility of land surface models, uncertainties persist in their parameterization schemes. This study employs GRACE (Gravity Recovery and Climate Experiment) satellite data to optimize the runoff parameterization scheme within the Common Land Model by a data assimilation and parameter optimization method. The optimization algorithm sets an adjustment factor that varies with time and space for runoff simulation and updates it along with the running of the land surface model. The evaluation reveals that there are improved correlation coefficients and reduced root mean square errors compared to GRACE observations. Independent assessments by using in situ river discharge observations demonstrate enhanced model performance, particularly in mountainous regions such as western North America. This study underscores the efficacy of integrating GRACE data to improve land surface model parameterization, offering more accurate predictions of TWS changes.

Suggested Citation

  • Yuan Su & Shupeng Zhang, 2024. "Optimizing Parameters in the Common Land Model by Using Gravity Recovery and Climate Experiment Satellite Observations," Land, MDPI, vol. 13(4), pages 1-15, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:508-:d:1374938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincent Humphrey & Jakob Zscheischler & Philippe Ciais & Lukas Gudmundsson & Stephen Sitch & Sonia I. Seneviratne, 2018. "Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage," Nature, Nature, vol. 560(7720), pages 628-631, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).
    5. He, Bohao & Jia, Biying & Zhao, Yanghe & Wang, Xu & Wei, Mao & Dietzel, Ranae, 2022. "Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Kai Wang & Ana Bastos & Philippe Ciais & Xuhui Wang & Christian Rödenbeck & Pierre Gentine & Frédéric Chevallier & Vincent W. Humphrey & Chris Huntingford & Michael O’Sullivan & Sonia I. Seneviratne, 2022. "Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Peijun Li & Yuanyuan Zha & Liangsheng Shi & Hua Zhong & Chak-Hau Michael Tso & Mousong Wu, 2022. "Assessing the Global Relationships Between Teleconnection Factors and Terrestrial Water Storage Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 119-133, January.
    8. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Panxing He & Yiyan Zeng & Ningfei Wang & Zhiming Han & Xiaoyu Meng & Tong Dong & Xiaoliang Ma & Shangqian Ma & Jun Ma & Zongjiu Sun, 2023. "Early Evidence That Soil Dryness Causes Widespread Decline in Grassland Productivity in China," Land, MDPI, vol. 12(2), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:508-:d:1374938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.