IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v551y2017i7678d10.1038_nature24278.html
   My bibliography  Save this article

Structure of phycobilisome from the red alga Griffithsia pacifica

Author

Listed:
  • Jun Zhang

    (State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University
    MRC Laboratory of Molecular Biology)

  • Jianfei Ma

    (State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University)

  • Desheng Liu

    (State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University)

  • Song Qin

    (Yantai Institute of Coast Zone Research, Chinese Academy of Sciences)

  • Shan Sun

    (State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University)

  • Jindong Zhao

    (State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University
    Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences)

  • Sen-Fang Sui

    (State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University)

Abstract

Life on Earth depends on photosynthesis for its conversion of solar energy to chemical energy. Photosynthetic organisms have developed a variety of light-harvesting systems to capture sunlight. The largest light-harvesting complex is the phycobilisome (PBS), the main light-harvesting antenna in cyanobacteria and red algae. It is composed of phycobiliproteins and linker proteins but the assembly mechanisms and energy transfer pathways of the PBS are not well understood. Here we report the structure of a 16.8-megadalton PBS from a red alga at 3.5 Å resolution obtained by single-particle cryo-electron microscopy. We modelled 862 protein subunits, including 4 linkers in the core, 16 rod–core linkers and 52 rod linkers, and located a total of 2,048 chromophores. This structure reveals the mechanisms underlying specific interactions between linkers and phycobiliproteins, and the formation of linker skeletons. These results provide a firm structural basis for our understanding of complex assembly and the mechanisms of energy transfer within the PBS.

Suggested Citation

  • Jun Zhang & Jianfei Ma & Desheng Liu & Song Qin & Shan Sun & Jindong Zhao & Sen-Fang Sui, 2017. "Structure of phycobilisome from the red alga Griffithsia pacifica," Nature, Nature, vol. 551(7678), pages 57-63, November.
  • Handle: RePEc:nat:nature:v:551:y:2017:i:7678:d:10.1038_nature24278
    DOI: 10.1038/nature24278
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24278
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Guillén-García & Savannah E. R. Gibson & Caleb J. C. Jordan & Venkata K. Ramaswamy & Victoria L. Linthwaite & Elizabeth H. C. Bromley & Adrian P. Brown & David R. W. Hodgson & Tim R. Blower , 2022. "Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zhiyuan Mao & Xingyue Li & Zhenhua Li & Liangliang Shen & Xiaoyi Li & Yanyan Yang & Wenda Wang & Tingyun Kuang & Jian-Ren Shen & Guangye Han, 2024. "Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Lvqin Zheng & Zhengdong Zhang & Hongrui Wang & Zhenggao Zheng & Jiayu Wang & Heyuan Liu & Hailong Chen & Chunxia Dong & Guopeng Wang & Yuxiang Weng & Ning Gao & Jindong Zhao, 2023. "Cryo-EM and femtosecond spectroscopic studies provide mechanistic insight into the energy transfer in CpcL-phycobilisomes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Han-Wei Jiang & Hsiang-Yi Wu & Chun-Hsiung Wang & Cheng-Han Yang & Jui-Tse Ko & Han-Chen Ho & Ming-Daw Tsai & Donald A. Bryant & Fay-Wei Li & Meng-Chiao Ho & Ming-Yang Ho, 2023. "A structure of the relict phycobilisome from a thylakoid-free cyanobacterium," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Keisuke Kawakami & Tasuku Hamaguchi & Yuu Hirose & Daisuke Kosumi & Makoto Miyata & Nobuo Kamiya & Koji Yonekura, 2022. "Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Shivam Yadav & Martin Centola & Mathilda Glaesmann & Denys Pogoryelov & Roman Ladig & Mike Heilemann & L. C. Rai & Özkan Yildiz & Enrico Schleiff, 2022. "Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:551:y:2017:i:7678:d:10.1038_nature24278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.