IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v543y2017i7644d10.1038_nature21413.html
   My bibliography  Save this article

Observation of a discrete time crystal

Author

Listed:
  • J. Zhang

    (Joint Quantum Institute)

  • P. W. Hess

    (Joint Quantum Institute)

  • A. Kyprianidis

    (Joint Quantum Institute)

  • P. Becker

    (Joint Quantum Institute)

  • A. Lee

    (Joint Quantum Institute)

  • J. Smith

    (Joint Quantum Institute)

  • G. Pagano

    (Joint Quantum Institute)

  • I.-D. Potirniche

    (University of California Berkeley)

  • A. C. Potter

    (University of Texas at Austin)

  • A. Vishwanath

    (University of California Berkeley
    Harvard University)

  • N. Y. Yao

    (University of California Berkeley)

  • C. Monroe

    (Joint Quantum Institute
    IonQ, Inc.)

Abstract

A time crystal is a state of matter that shows robust oscillations in time, and although forbidden in equilibrium, a discrete time crystal has now been observed in a periodically driven quantum system.

Suggested Citation

  • J. Zhang & P. W. Hess & A. Kyprianidis & P. Becker & A. Lee & J. Smith & G. Pagano & I.-D. Potirniche & A. C. Potter & A. Vishwanath & N. Y. Yao & C. Monroe, 2017. "Observation of a discrete time crystal," Nature, Nature, vol. 543(7644), pages 217-220, March.
  • Handle: RePEc:nat:nature:v:543:y:2017:i:7644:d:10.1038_nature21413
    DOI: 10.1038/nature21413
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature21413
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature21413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Xiang & Wenjie Jiang & Zehang Bao & Zixuan Song & Shibo Xu & Ke Wang & Jiachen Chen & Feitong Jin & Xuhao Zhu & Zitian Zhu & Fanhao Shen & Ning Wang & Chuanyu Zhang & Yaozu Wu & Yiren Zou & Jiar, 2024. "Long-lived topological time-crystalline order on a quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. E. J. Wildman & G. B. Lawrence & A. Walsh & K. Morita & S. Simpson & C. Ritter & G. B. G. Stenning & A. M. Arevalo-Lopez & A. C. Mclaughlin, 2023. "Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Reinhold Kleiner & Xianjing Zhou & Eric Dorsch & Xufeng Zhang & Dieter Koelle & Dafei Jin, 2021. "Space-time crystalline order of a high-critical-temperature superconductor with intrinsic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. L. J. Stanley & Ping V. Lin & J. Jaroszyński & Dragana Popović, 2023. "Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Bang Liu & Li-Hua Zhang & Qi-Feng Wang & Yu Ma & Tian-Yu Han & Jun Zhang & Zheng-Yuan Zhang & Shi-Yao Shao & Qing Li & Han-Chao Chen & Bao-Sen Shi & Dong-Sheng Ding, 2024. "Higher-order and fractional discrete time crystals in Floquet-driven Rydberg atoms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Zehang Bao & Shibo Xu & Zixuan Song & Ke Wang & Liang Xiang & Zitian Zhu & Jiachen Chen & Feitong Jin & Xuhao Zhu & Yu Gao & Yaozu Wu & Chuanyu Zhang & Ning Wang & Yiren Zou & Ziqi Tan & Aosai Zhang &, 2024. "Creating and controlling global Greenberger-Horne-Zeilinger entanglement on quantum processors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. S. Autti & P. J. Heikkinen & J. Nissinen & J. T. Mäkinen & G. E. Volovik & V. V. Zavyalov & V. B. Eltsov, 2022. "Nonlinear two-level dynamics of quantum time crystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Xiuqi Wu & Ying Zhang & Junsong Peng & Sonia Boscolo & Christophe Finot & Heping Zeng, 2022. "Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:543:y:2017:i:7644:d:10.1038_nature21413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.