IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v538y2016i7623d10.1038_nature19773.html
   My bibliography  Save this article

Circuit-based interrogation of sleep control

Author

Listed:
  • Franz Weber

    (Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California)

  • Yang Dan

    (Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California)

Abstract

Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain.

Suggested Citation

  • Franz Weber & Yang Dan, 2016. "Circuit-based interrogation of sleep control," Nature, Nature, vol. 538(7623), pages 51-59, October.
  • Handle: RePEc:nat:nature:v:538:y:2016:i:7623:d:10.1038_nature19773
    DOI: 10.1038/nature19773
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19773
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Liu & Benjamin J. Bell & Dong Won Kim & Sang Soo Lee & Mehmet F. Keles & Qili Liu & Ian D. Blum & Annette A. Wang & Elijah J. Blank & Jiali Xiong & Joseph L. Bedont & Anna J. Chang & Habon Issa , 2023. "A clock-dependent brake for rhythmic arousal in the dorsomedial hypothalamus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Layton Lamsam & Brett Gu & Mingli Liang & George Sun & Kamren J. Khan & Kevin N. Sheth & Lawrence J. Hirsch & Christopher Pittenger & Alfred P. Kaye & John H. Krystal & Eyiyemisi C. Damisah, 2024. "The human claustrum tracks slow waves during sleep," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yalin Yu & Yue Qiu & Gen Li & Kaiwei Zhang & Binshi Bo & Mengchao Pei & Jingjing Ye & Garth J. Thompson & Jing Cang & Fang Fang & Yanqiu Feng & Xiaojie Duan & Chuanjun Tong & Zhifeng Liang, 2023. "Sleep fMRI with simultaneous electrophysiology at 9.4 T in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Sasa Teng & Fenghua Zhen & Li Wang & Jose Canovas Schalchli & Jane Simko & Xinyue Chen & Hao Jin & Christopher D. Makinson & Yueqing Peng, 2022. "Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Ya-Nan Zhao & Jian-Bo Jiang & Shi-Yuan Tao & Yang Zhang & Ze-Ka Chen & Wei-Min Qu & Zhi-Li Huang & Su-Rong Yang, 2022. "GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Beverly Setzer & Nina E. Fultz & Daniel E. P. Gomez & Stephanie D. Williams & Giorgio Bonmassar & Jonathan R. Polimeni & Laura D. Lewis, 2022. "A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:538:y:2016:i:7623:d:10.1038_nature19773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.