IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v521y2015i7551d10.1038_nature14447.html
   My bibliography  Save this article

Complex archaea that bridge the gap between prokaryotes and eukaryotes

Author

Listed:
  • Anja Spang

    (Science for Life Laboratory, Uppsala University)

  • Jimmy H. Saw

    (Science for Life Laboratory, Uppsala University)

  • Steffen L. Jørgensen

    (Centre for Geobiology, University of Bergen)

  • Katarzyna Zaremba-Niedzwiedzka

    (Science for Life Laboratory, Uppsala University)

  • Joran Martijn

    (Science for Life Laboratory, Uppsala University)

  • Anders E. Lind

    (Science for Life Laboratory, Uppsala University)

  • Roel van Eijk

    (Science for Life Laboratory, Uppsala University
    †Present address: Groningen Institute for Evolutionary Life Sciences, University of Groningen, NL-9747AG Groningen, The Netherlands.)

  • Christa Schleper

    (Centre for Geobiology, University of Bergen
    University of Vienna)

  • Lionel Guy

    (Science for Life Laboratory, Uppsala University
    Uppsala University)

  • Thijs J. G. Ettema

    (Science for Life Laboratory, Uppsala University)

Abstract

The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of ‘Lokiarchaeota’, a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic ‘starter-kit’ to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.

Suggested Citation

  • Anja Spang & Jimmy H. Saw & Steffen L. Jørgensen & Katarzyna Zaremba-Niedzwiedzka & Joran Martijn & Anders E. Lind & Roel van Eijk & Christa Schleper & Lionel Guy & Thijs J. G. Ettema, 2015. "Complex archaea that bridge the gap between prokaryotes and eukaryotes," Nature, Nature, vol. 521(7551), pages 173-179, May.
  • Handle: RePEc:nat:nature:v:521:y:2015:i:7551:d:10.1038_nature14447
    DOI: 10.1038/nature14447
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14447
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tara A. Mahendrarajah & Edmund R. R. Moody & Dominik Schrempf & Lénárd L. Szánthó & Nina Dombrowski & Adrián A. Davín & Davide Pisani & Philip C. J. Donoghue & Gergely J. Szöllősi & Tom A. Williams & , 2023. "ATP synthase evolution on a cross-braced dated tree of life," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Tomoyuki Hatano & Saravanan Palani & Dimitra Papatziamou & Ralf Salzer & Diorge P. Souza & Daniel Tamarit & Mehul Makwana & Antonia Potter & Alexandra Haig & Wenjue Xu & David Townsend & David Rochest, 2022. "Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Luis E. Valentin-Alvarado & Kathryn E. Appler & Valerie Anda & Marie C. Schoelmerich & Jacob West-Roberts & Veronika Kivenson & Alexander Crits-Christoph & Lynn Ly & Rohan Sachdeva & Chris Greening & , 2024. "Asgard archaea modulate potential methanogenesis substrates in wetland soil," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Clément Madru & Markel Martínez-Carranza & Sébastien Laurent & Alessandra C. Alberti & Maelenn Chevreuil & Bertrand Raynal & Ahmed Haouz & Rémy A. Meur & Marc Delarue & Ghislaine Henneke & Didier Flam, 2023. "DNA-binding mechanism and evolution of replication protein A," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Zhiguang Qiu & Li Yuan & Chun-Ang Lian & Bin Lin & Jie Chen & Rong Mu & Xuejiao Qiao & Liyu Zhang & Zheng Xu & Lu Fan & Yunzeng Zhang & Shanquan Wang & Junyi Li & Huiluo Cao & Bing Li & Baowei Chen & , 2024. "BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jonathan Filée & Hubert F. Becker & Lucille Mellottee & Rima Zein Eddine & Zhihui Li & Wenlu Yin & Jean-Christophe Lambry & Ursula Liebl & Hannu Myllykallio, 2023. "Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Liyanage D. Fernando & Yordanis Pérez-Llano & Malitha C. Dickwella Widanage & Anand Jacob & Liliana Martínez-Ávila & Andrew S. Lipton & Nina Gunde-Cimerman & Jean-Paul Latgé & Ramón Alberto Batista-Ga, 2023. "Structural adaptation of fungal cell wall in hypersaline environment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Carolien Bastiaanssen & Pilar Bobadilla Ugarte & Kijun Kim & Giada Finocchio & Yanlei Feng & Todd A. Anzelon & Stephan Köstlbacher & Daniel Tamarit & Thijs J. G. Ettema & Martin Jinek & Ian J. MacRae , 2024. "RNA-guided RNA silencing by an Asgard archaeal Argonaute," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Luís António Menezes Carreira & Dobromir Szadkowski & Stefano Lometto & Georg. K. A. Hochberg & Lotte Søgaard-Andersen, 2023. "Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:521:y:2015:i:7551:d:10.1038_nature14447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.