IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v513y2014i7518d10.1038_nature13438.html
   My bibliography  Save this article

Proteogenomic characterization of human colon and rectal cancer

Author

Listed:
  • Bing Zhang

    (Vanderbilt University School of Medicine
    Vanderbilt University School of Medicine)

  • Jing Wang

    (Vanderbilt University School of Medicine)

  • Xiaojing Wang

    (Vanderbilt University School of Medicine)

  • Jing Zhu

    (Vanderbilt University School of Medicine)

  • Qi Liu

    (Vanderbilt University School of Medicine)

  • Zhiao Shi

    (Advanced Computing Center for Research and Education, Vanderbilt University
    Vanderbilt University)

  • Matthew C. Chambers

    (Vanderbilt University School of Medicine)

  • Lisa J. Zimmerman

    (Vanderbilt University School of Medicine
    Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center)

  • Kent F. Shaddox

    (Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center)

  • Sangtae Kim

    (Directorate of Fundamental and Computational Sciences, Pacific Northwest National Laboratory)

  • Sherri R. Davies

    (Washington University School of Medicine)

  • Sean Wang

    (Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M2-B500, Seattle, Washington 98109, USA)

  • Pei Wang

    (Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, New York 10029, USA)

  • Christopher R. Kinsinger

    (Office of Cancer Clinical Proteomics Research, National Cancer Institute)

  • Robert C. Rivers

    (Office of Cancer Clinical Proteomics Research, National Cancer Institute)

  • Henry Rodriguez

    (Office of Cancer Clinical Proteomics Research, National Cancer Institute)

  • R. Reid Townsend

    (Washington University School of Medicine)

  • Matthew J. C. Ellis

    (Washington University School of Medicine)

  • Steven A. Carr

    (Broad Institute of MIT and Harvard)

  • David L. Tabb

    (Vanderbilt University School of Medicine)

  • Robert J. Coffey

    (Vanderbilt University School of Medicine)

  • Robbert J. C. Slebos

    (Vanderbilt University School of Medicine
    Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center)

  • Daniel C. Liebler

    (Vanderbilt University School of Medicine
    Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center)

Abstract

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.

Suggested Citation

  • Bing Zhang & Jing Wang & Xiaojing Wang & Jing Zhu & Qi Liu & Zhiao Shi & Matthew C. Chambers & Lisa J. Zimmerman & Kent F. Shaddox & Sangtae Kim & Sherri R. Davies & Sean Wang & Pei Wang & Christopher, 2014. "Proteogenomic characterization of human colon and rectal cancer," Nature, Nature, vol. 513(7518), pages 382-387, September.
  • Handle: RePEc:nat:nature:v:513:y:2014:i:7518:d:10.1038_nature13438
    DOI: 10.1038/nature13438
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13438
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Sahar Harati & Lee A D Cooper & Josue D Moran & Felipe O Giuste & Yuhong Du & Andrei A Ivanov & Margaret A Johns & Fadlo R Khuri & Haian Fu & Carlos S Moreno, 2017. "MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-18, January.
    3. Hailiang Zhang & Lin Bai & Xin-Qiang Wu & Xi Tian & Jinwen Feng & Xiaohui Wu & Guo-Hai Shi & Xiaoru Pei & Jiacheng Lyu & Guojian Yang & Yang Liu & Wenhao Xu & Aihetaimujiang Anwaier & Yu Zhu & Da-Long, 2023. "Proteogenomics of clear cell renal cell carcinoma response to tyrosine kinase inhibitor," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Yan Li & Bing Wang & Wentao Yang & Fahan Ma & Jianling Zou & Kai Li & Subei Tan & Jinwen Feng & Yunzhi Wang & Zhaoyu Qin & Zhiyu Chen & Chen Ding, 2024. "Longitudinal plasma proteome profiling reveals the diversity of biomarkers for diagnosis and cetuximab therapy response of colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Paul A Stewart & Katja Parapatics & Eric A Welsh & André C Müller & Haoyun Cao & Bin Fang & John M Koomen & Steven A Eschrich & Keiryn L Bennett & Eric B Haura, 2015. "A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-18, November.
    6. Qi Liu & Charles A Herring & Quanhu Sheng & Jie Ping & Alan J Simmons & Bob Chen & Amrita Banerjee & Wei Li & Guoqiang Gu & Robert J Coffey & Yu Shyr & Ken S Lau, 2018. "Quantitative assessment of cell population diversity in single-cell landscapes," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-29, October.
    7. Yiqun Zhang & Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2022. "Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Ling Li & Mingming Niu & Alyssa Erickson & Jie Luo & Kincaid Rowbotham & Kai Guo & He Huang & Yuxin Li & Yi Jiang & Junguk Hur & Chunyu Liu & Junmin Peng & Xusheng Wang, 2022. "SMAP is a pipeline for sample matching in proteogenomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Fengju Chen & Yiqun Zhang & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2023. "Global impact of somatic structural variation on the cancer proteome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Isabelle Rose Leo & Luay Aswad & Matthias Stahl & Elena Kunold & Frederik Post & Tom Erkers & Nona Struyf & Georgios Mermelekas & Rubin Narayan Joshi & Eva Gracia-Villacampa & Päivi Östling & Olli P. , 2022. "Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Angela Re & Levi Waldron & Alessandro Quattrone, 2016. "Control of Gene Expression by RNA Binding Protein Action on Alternative Translation Initiation Sites," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-25, December.
    12. Jinsen Zhang & Rui Sun & Yingying Lyu & Chaxian Liu & Ying Liu & Yuan Feng & Minjie Fu & Peter Jih Cheng Wong & Zunguo Du & Tianming Qiu & Yi Zhang & Dongxiao Zhuang & Zhiyong Qin & Yu Yao & Wei Zhu &, 2024. "Proteomic profiling of gliomas unveils immune and metabolism-driven subtypes with implications for anti-nucleotide metabolism therapy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Alla D. Fedorova & Stephen J. Kiniry & Dmitry E. Andreev & Jonathan M. Mudge & Pavel V. Baranov, 2022. "Thousands of human non-AUG extended proteoforms lack evidence of evolutionary selection among mammals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:513:y:2014:i:7518:d:10.1038_nature13438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.