IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v500y2013i7464d10.1038_nature12475.html
   My bibliography  Save this article

Prolonged dopamine signalling in striatum signals proximity and value of distant rewards

Author

Listed:
  • Mark W. Howe

    (Massachusetts Institute of Technology)

  • Patrick L. Tierney

    (Massachusetts Institute of Technology)

  • Stefan G. Sandberg

    (University of Washington)

  • Paul E. M. Phillips

    (University of Washington)

  • Ann M. Graybiel

    (Massachusetts Institute of Technology)

Abstract

Cyclic voltammetry reveals an extended mode of reward-predictive dopamine signalling in the striatum as rats navigate; signals increase as the rats approach distant rewards, instead of showing phasic or steady tonic activity, and the increases scale flexibly with the distance and size of the rewards.

Suggested Citation

  • Mark W. Howe & Patrick L. Tierney & Stefan G. Sandberg & Paul E. M. Phillips & Ann M. Graybiel, 2013. "Prolonged dopamine signalling in striatum signals proximity and value of distant rewards," Nature, Nature, vol. 500(7464), pages 575-579, August.
  • Handle: RePEc:nat:nature:v:500:y:2013:i:7464:d:10.1038_nature12475
    DOI: 10.1038/nature12475
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature12475
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature12475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    2. Seetha Krishnan & Chad Heer & Chery Cherian & Mark E. J. Sheffield, 2022. "Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Eleanor Holton & Jan Grohn & Harry Ward & Sanjay G. Manohar & Jill X. O’Reilly & Nils Kolling, 2024. "Goal commitment is supported by vmPFC through selective attention," Nature Human Behaviour, Nature, vol. 8(7), pages 1351-1365, July.
    4. Miguel Á. Luján & Dan P. Covey & Reana Young-Morrison & LanYuan Zhang & Andrew Kim & Fiorella Morgado & Sachin Patel & Caroline E. Bass & Carlos Paladini & Joseph F. Cheer, 2023. "Mobilization of endocannabinoids by midbrain dopamine neurons is required for the encoding of reward prediction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Min Jung Kim & Daniel J. Gibson & Dan Hu & Tomoko Yoshida & Emily Hueske & Ayano Matsushima & Ara Mahar & Cynthia J. Schofield & Patlapa Sompolpong & Kathy T. Tran & Lin Tian & Ann M. Graybiel, 2024. "Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Armando G. Salinas & Jeong Oen Lee & Shana M. Augustin & Shiliang Zhang & Tommaso Patriarchi & Lin Tian & Marisela Morales & Yolanda Mateo & David M. Lovinger, 2023. "Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Kazutaka Maeda & Ken-ichi Inoue & Masahiko Takada & Okihide Hikosaka, 2023. "Environmental context-dependent activation of dopamine neurons via putative amygdala-nigra pathway in macaques," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Laurens Winkelmeier & Carla Filosa & Renée Hartig & Max Scheller & Markus Sack & Jonathan R. Reinwald & Robert Becker & David Wolf & Martin Fungisai Gerchen & Alexander Sartorius & Andreas Meyer-Linde, 2022. "Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Abigail Kalmbach & Vanessa Winiger & Nuri Jeong & Arun Asok & Charles R. Gallistel & Peter D. Balsam & Eleanor H. Simpson, 2022. "Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:500:y:2013:i:7464:d:10.1038_nature12475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.