IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v485y2012i7396d10.1038_nature11030.html
   My bibliography  Save this article

Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists

Author

Listed:
  • Laura A. Solt

    (The Scripps Research Institute)

  • Yongjun Wang

    (The Scripps Research Institute)

  • Subhashis Banerjee

    (The Scripps Research Institute)

  • Travis Hughes

    (The Scripps Research Institute)

  • Douglas J. Kojetin

    (The Scripps Research Institute)

  • Thomas Lundasen

    (The Scripps Research Institute)

  • Youseung Shin

    (Translational Research Institute, The Scripps Research Institute)

  • Jin Liu

    (The Scripps Research Institute)

  • Michael D. Cameron

    (Translational Research Institute, The Scripps Research Institute)

  • Romain Noel

    (Translational Research Institute, The Scripps Research Institute)

  • Seung-Hee Yoo

    (University of Texas Southwestern Medical Center)

  • Joseph S. Takahashi

    (University of Texas Southwestern Medical Center)

  • Andrew A. Butler

    (The Scripps Research Institute)

  • Theodore M. Kamenecka

    (Translational Research Institute, The Scripps Research Institute)

  • Thomas P. Burris

    (The Scripps Research Institute
    Center for Diabetes and Metabolic Diseases, The Scripps Research Institute)

Abstract

Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-α and REV-ERB-β have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic REV-ERB agonists with in vivo activity. Administration of synthetic REV-ERB ligands alters circadian behaviour and the circadian pattern of core clock gene expression in the hypothalami of mice. The circadian pattern of expression of an array of metabolic genes in the liver, skeletal muscle and adipose tissue was also altered, resulting in increased energy expenditure. Treatment of diet-induced obese mice with a REV-ERB agonist decreased obesity by reducing fat mass and markedly improving dyslipidaemia and hyperglycaemia. These results indicate that synthetic REV-ERB ligands that pharmacologically target the circadian rhythm may be beneficial in the treatment of sleep disorders as well as metabolic diseases.

Suggested Citation

  • Laura A. Solt & Yongjun Wang & Subhashis Banerjee & Travis Hughes & Douglas J. Kojetin & Thomas Lundasen & Youseung Shin & Jin Liu & Michael D. Cameron & Romain Noel & Seung-Hee Yoo & Joseph S. Takaha, 2012. "Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists," Nature, Nature, vol. 485(7396), pages 62-68, May.
  • Handle: RePEc:nat:nature:v:485:y:2012:i:7396:d:10.1038_nature11030
    DOI: 10.1038/nature11030
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11030
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meghan H. Murray & Aurore Cecile Valfort & Thomas Koelblen & Céline Ronin & Fabrice Ciesielski & Arindam Chatterjee & Giri Babu Veerakanellore & Bahaa Elgendy & John K. Walker & Lamees Hegazy & Thomas, 2022. "Structural basis of synthetic agonist activation of the nuclear receptor REV-ERB," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Hengxu Liu & Shiqi Liu & Kun Wang & Tingran Zhang & Lian Yin & Jiaqi Liang & Yi Yang & Jiong Luo, 2022. "Time-Dependent Effects of Physical Activity on Cardiovascular Risk Factors in Adults: A Systematic Review," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    3. David H. Sarrazin & Wilf Gardner & Carole Marchese & Martin Balzinger & Chockalingam Ramanathan & Marion Schott & Stanislav Rozov & Maxime Veleanu & Stefan Vestring & Claus Normann & Tomi Rantamäki & , 2024. "Prefrontal cortex molecular clock modulates development of depression-like phenotype and rapid antidepressant response in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Kameron Hahn & Isaac Kirubakaran Sundar, 2023. "Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
    5. Qixin Wang & Isaac Kirubakaran Sundar & Joseph H. Lucas & Jun-Gyu Park & Aitor Nogales & Luis Martinez-Sobrido & Irfan Rahman, 2023. "Circadian clock molecule REV-ERBα regulates lung fibrotic progression through collagen stabilization," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Yasuko O. Abe & Hikari Yoshitane & Dae Wook Kim & Satoshi Kawakami & Michinori Koebis & Kazuki Nakao & Atsu Aiba & Jae Kyoung Kim & Yoshitaka Fukada, 2022. "Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Seref Gul & Yasemin Kubra Akyel & Zeynep Melis Gul & Safak Isin & Onur Ozcan & Tuba Korkmaz & Saba Selvi & Ibrahim Danis & Ozgecan Savlug Ipek & Fatih Aygenli & Ali Cihan Taskin & Büşra Aytül Akarlar , 2022. "Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:485:y:2012:i:7396:d:10.1038_nature11030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.