IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v477y2011i7362d10.1038_nature10347.html
   My bibliography  Save this article

Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy

Author

Listed:
  • Alex Sigal

    (California Institute of Technology)

  • Jocelyn T. Kim

    (California Institute of Technology
    David Geffen School of Medicine at UCLA)

  • Alejandro B. Balazs

    (California Institute of Technology)

  • Erez Dekel

    (Weizmann Institute of Science)

  • Avi Mayo

    (Weizmann Institute of Science)

  • Ron Milo

    (Weizmann Institute of Science)

  • David Baltimore

    (California Institute of Technology)

Abstract

HIV persists through continued transmission Antiretroviral therapy suppresses, but does not eradicate, HIV infection. Low-level viraemia continues for life because of the persistence of treatment-resistant reservoirs of the virus. Various different types of reservoir are thought to exist. David Baltimore and colleagues use a combination of mathematical modelling and a cell culture model of HIV infection and drug treatment to propose that ongoing HIV replication can occur in the presence of drugs if the cells become infected through cell-to-cell transmission. They propose that cell-to-cell spread of virus could be a source of localized and intermittent ongoing replication, which may show little evolution, and which could contribute to replenishment of the virus reservoir and virus persistence.

Suggested Citation

  • Alex Sigal & Jocelyn T. Kim & Alejandro B. Balazs & Erez Dekel & Avi Mayo & Ron Milo & David Baltimore, 2011. "Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy," Nature, Nature, vol. 477(7362), pages 95-98, September.
  • Handle: RePEc:nat:nature:v:477:y:2011:i:7362:d:10.1038_nature10347
    DOI: 10.1038/nature10347
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10347
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chong & Zhou, Yinggao, 2023. "Dynamic analysis of HIV model with a general incidence, CTLs immune response and intracellular delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 159-181.
    2. Noura H. AlShamrani & Reham H. Halawani & Ahmed M. Elaiw, 2023. "Effect of Impaired B-Cell and CTL Functions on HIV-1 Dynamics," Mathematics, MDPI, vol. 11(20), pages 1-39, October.
    3. Noura H. AlShamrani & Ahmed Elaiw & Aeshah A. Raezah & Khalid Hattaf, 2023. "Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency," Mathematics, MDPI, vol. 11(6), pages 1-47, March.
    4. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. AlShamrani, N.H., 2021. "Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Lucia Reh & Carsten Magnus & Merle Schanz & Jacqueline Weber & Therese Uhr & Peter Rusert & Alexandra Trkola, 2015. "Capacity of Broadly Neutralizing Antibodies to Inhibit HIV-1 Cell-Cell Transmission Is Strain- and Epitope-Dependent," PLOS Pathogens, Public Library of Science, vol. 11(7), pages 1-34, July.
    7. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Pinto, Carla M.A. & Carvalho, Ana R.M., 2017. "The role of synaptic transmission in a HIV model with memory," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 76-95.
    9. Mojaver, Aida & Kheiri, Hossein, 2015. "Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 258-270.
    10. Ma, Yuanlin & Yu, Xingwang, 2020. "The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    11. Liu, Lili & Ma, Xiaomin & Li, Yazhi & Liu, Xianning, 2023. "Mathematical analysis of global dynamics and optimal control of treatment for an age-structured HBV infection model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    13. Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:477:y:2011:i:7362:d:10.1038_nature10347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.