IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011426.html
   My bibliography  Save this article

Mathematical analysis of global dynamics and optimal control of treatment for an age-structured HBV infection model

Author

Listed:
  • Liu, Lili
  • Ma, Xiaomin
  • Li, Yazhi
  • Liu, Xianning

Abstract

Evidences show that cell-to-cell infection occurs in HBV infection and is a very efficient way which may lead to more than half of the viral infection. Hence we formulate an HBV infection model with cell-to-cell infection, meanwhile, we incorporate the infection age of infected cells. For dynamic behaviors, we firstly establish the well-posedness and asymptotic smoothness of the model; then show the global threshold dynamical behaviors, which are determined by the reproduction number; and finally perform numerical simulations not only to verify the theoretical results but also to explore effects of cell-to-cell infection on viral load and infection concentration. Our finding is that ignoring the cell-to-cell infection will underestimate the actual HBV infection status. For optimal control of treatment for HBV, we introduce two time-varying control measures and investigate the corresponding optimal control problem. We derive the characteristic expression of the optimal control and discuss effects of control costs and integrated control. The results show that high control cost will not result in better control effectiveness, while integrated optimal control can reach the best control objectives compared with the two single ones. Moreover, infection age can greatly influence HBV infection at the initial stage.

Suggested Citation

  • Liu, Lili & Ma, Xiaomin & Li, Yazhi & Liu, Xianning, 2023. "Mathematical analysis of global dynamics and optimal control of treatment for an age-structured HBV infection model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011426
    DOI: 10.1016/j.chaos.2023.114240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alex Sigal & Jocelyn T. Kim & Alejandro B. Balazs & Erez Dekel & Avi Mayo & Ron Milo & David Baltimore, 2011. "Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy," Nature, Nature, vol. 477(7362), pages 95-98, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojaver, Aida & Kheiri, Hossein, 2015. "Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 258-270.
    2. Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Lin, Jiazhe & Xu, Rui & Tian, Xiaohong, 2017. "Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 516-530.
    5. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Noura H. AlShamrani & Ahmed Elaiw & Aeshah A. Raezah & Khalid Hattaf, 2023. "Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency," Mathematics, MDPI, vol. 11(6), pages 1-47, March.
    7. Lucia Reh & Carsten Magnus & Merle Schanz & Jacqueline Weber & Therese Uhr & Peter Rusert & Alexandra Trkola, 2015. "Capacity of Broadly Neutralizing Antibodies to Inhibit HIV-1 Cell-Cell Transmission Is Strain- and Epitope-Dependent," PLOS Pathogens, Public Library of Science, vol. 11(7), pages 1-34, July.
    8. Pinto, Carla M.A. & Carvalho, Ana R.M., 2017. "The role of synaptic transmission in a HIV model with memory," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 76-95.
    9. Chen, Chong & Zhou, Yinggao, 2023. "Dynamic analysis of HIV model with a general incidence, CTLs immune response and intracellular delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 159-181.
    10. Ma, Yuanlin & Yu, Xingwang, 2020. "The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    11. Noura H. AlShamrani & Reham H. Halawani & Ahmed M. Elaiw, 2023. "Effect of Impaired B-Cell and CTL Functions on HIV-1 Dynamics," Mathematics, MDPI, vol. 11(20), pages 1-39, October.
    12. AlShamrani, N.H., 2021. "Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.