IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v472y2011i7342d10.1038_nature09868.html
   My bibliography  Save this article

Distinct representations of olfactory information in different cortical centres

Author

Listed:
  • Dara L. Sosulski

    (College of Physicians and Surgeons, Columbia University)

  • Maria Lissitsyna Bloom

    (College of Physicians and Surgeons, Columbia University
    Present addresses: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (M.L.B., S.R.D.); Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA (T.C.).)

  • Tyler Cutforth

    (College of Physicians and Surgeons, Columbia University
    Present addresses: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (M.L.B., S.R.D.); Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA (T.C.).)

  • Richard Axel

    (College of Physicians and Surgeons, Columbia University)

  • Sandeep Robert Datta

    (College of Physicians and Surgeons, Columbia University
    Present addresses: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (M.L.B., S.R.D.); Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA (T.C.).)

Abstract

Scent tracking In the mouse, glomeruli in the olfactory bulb receive projections from single classes of olfactory neurons, thereby forming an odour map. Information from the glomeruli is then relayed to the cortex but the projection patterns from individual glomeruli are not known. Three papers now examine the details of this projection. Luo and colleagues use a combination of genetics and retrograde mono-trans-synaptic rabies virus labelling. They trace the presynaptic connections of individual cortical neurons and find no evidence of connections supporting a stereotyped odour map in the cortex, but see systematic topographical differences in amygdala connectivity. The lack of stereotypical cortical projection is corroborated, both at the level of bulk axonal patterning and in projections of individually labelled neurons, by two papers — one from the Axel laboratory, and one from the Baldwin laboratory — that examine the anterograde projections from individual glomeruli. Together, these findings provide anatomical evidence for combinatorial processing of information from diverse glomeruli by cortical neurons and may also reflect different functions of various areas in mediating innate or learned odour preferences.

Suggested Citation

  • Dara L. Sosulski & Maria Lissitsyna Bloom & Tyler Cutforth & Richard Axel & Sandeep Robert Datta, 2011. "Distinct representations of olfactory information in different cortical centres," Nature, Nature, vol. 472(7342), pages 213-216, April.
  • Handle: RePEc:nat:nature:v:472:y:2011:i:7342:d:10.1038_nature09868
    DOI: 10.1038/nature09868
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09868
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaia Tavoni & David E Chen Kersen & Vijay Balasubramanian, 2021. "Cortical feedback and gating in odor discrimination and generalization," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-35, October.
    2. Geoffrey Terral & Evan Harrell & Gabriel Lepousez & Yohan Wards & Dinghuang Huang & Tiphaine Dolique & Giulio Casali & Antoine Nissant & Pierre-Marie Lledo & Guillaume Ferreira & Giovanni Marsicano & , 2024. "Endogenous cannabinoids in the piriform cortex tune olfactory perception," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Joseph D. Zak & Gautam Reddy & Vaibhav Konanur & Venkatesh N. Murthy, 2024. "Distinct information conveyed to the olfactory bulb by feedforward input from the nose and feedback from the cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:472:y:2011:i:7342:d:10.1038_nature09868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.