IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v457y2009i7231d10.1038_nature07742.html
   My bibliography  Save this article

Life without a wall or division machine in Bacillus subtilis

Author

Listed:
  • M. Leaver

    (Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK)

  • P. Domínguez-Cuevas

    (Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK)

  • J. M. Coxhead

    (Institute for Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK)

  • R. A. Daniel

    (Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK)

  • J. Errington

    (Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK)

Abstract

The cell wall is an essential structure for virtually all bacteria, forming a tough outer shell that protects the cell from damage and osmotic lysis. It is the target of our best antibiotics. L-form strains are wall-deficient derivatives of common bacteria that have been studied for decades. However, they are difficult to generate and typically require growth for many generations on osmotically protective media with antibiotics or enzymes that kill walled forms. Despite their potential importance for understanding antibiotic resistance and pathogenesis, little is known about their basic cell biology or their means of propagation. We have developed a controllable system for generating L-forms in the highly tractable model bacterium Bacillus subtilis. Here, using genome sequencing, we identify a single point mutation that predisposes cells to grow without a wall. We show that propagation of L-forms does not require the normal FtsZ-dependent division machine but occurs by a remarkable extrusion-resolution mechanism. This novel form of propagation provides insights into how early forms of cellular life may have proliferated.

Suggested Citation

  • M. Leaver & P. Domínguez-Cuevas & J. M. Coxhead & R. A. Daniel & J. Errington, 2009. "Life without a wall or division machine in Bacillus subtilis," Nature, Nature, vol. 457(7231), pages 849-853, February.
  • Handle: RePEc:nat:nature:v:457:y:2009:i:7231:d:10.1038_nature07742
    DOI: 10.1038/nature07742
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07742
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshikazu Kawai & Maki Kawai & Eilidh Sohini Mackenzie & Yousef Dashti & Bernhard Kepplinger & Kevin John Waldron & Jeff Errington, 2023. "On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Miloš Tišma & Florian Patrick Bock & Jacob Kerssemakers & Hammam Antar & Aleksandre Japaridze & Stephan Gruber & Cees Dekker, 2024. "Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Renée Kapteijn & Shraddha Shitut & Dennis Aschmann & Le Zhang & Marit Beer & Deniz Daviran & Rona Roverts & Anat Akiva & Gilles P. Wezel & Alexander Kros & Dennis Claessen, 2022. "Endocytosis-like DNA uptake by cell wall-deficient bacteria," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Manuel Halte & Ekaterina P. Andrianova & Christian Goosmann & Fabienne F. V. Chevance & Kelly T. Hughes & Igor B. Zhulin & Marc Erhardt, 2024. "FlhE functions as a chaperone to prevent formation of periplasmic flagella in Gram-negative bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Simone Pelliciari & Salomé Bodet-Lefèvre & Stepan Fenyk & Daniel Stevens & Charles Winterhalter & Frederic D. Schramm & Sara Pintar & Daniel R. Burnham & George Merces & Tomas T. Richardson & Yumiko T, 2023. "The bacterial replication origin BUS promotes nucleobase capture," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:457:y:2009:i:7231:d:10.1038_nature07742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.