IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v454y2008i7200d10.1038_nature07051.html
   My bibliography  Save this article

Volcanic carbon dioxide vents show ecosystem effects of ocean acidification

Author

Listed:
  • Jason M. Hall-Spencer

    (Marine Institute, Marine Biology and Ecology Research Centre, University of Plymouth)

  • Riccardo Rodolfo-Metalpa

    (Marine Institute, Marine Biology and Ecology Research Centre, University of Plymouth)

  • Sophie Martin

    (CNRS-Université de Paris 6)

  • Emma Ransome

    (Marine Institute, Marine Biology and Ecology Research Centre, University of Plymouth)

  • Maoz Fine

    (Faculty of Life Sciences, Bar-Ilan University
    The Interuniversity Institute for Marine Science)

  • Suzanne M. Turner

    (School of Environmental Sciences, University of East Anglia)

  • Sonia J. Rowley

    (Marine Institute, Marine Biology and Ecology Research Centre, University of Plymouth)

  • Dario Tedesco

    (2nd University of Naples
    Istituto di Geologia Ambientale e Geoingegneria, CNR)

  • Maria-Cristina Buia

    (Laboratorio di Ecologia del Benthos, Stazione Zoologica Anton Dohrn, Naples 80077, Italy)

Abstract

An ecosystem acid test A high-profile Royal Society report in 2005, followed by similar reports worldwide, high-lighted the fact that relatively little is known about the ecosystem effects of ocean acidification. Work to date has been largely limited to short-term experiments on isolated aspects of marine communities. Hall-Spencer et al. adopted an alternative approach, tracking the response to CO2 release from volcanic vent sites off the island of Ischia in the Bay of Naples, where ocean acidification has prevailed perhaps for centuries. Typical rocky shore communities rich in calcareous organisms thrive at normal pH, shifting to communities lacking scleractinian corals and low in sea urchin and algal numbers at low pH. The results show that such sites can act as natural experiments against which to test laboratory and modelled predictions of the effects of ocean acidification.

Suggested Citation

  • Jason M. Hall-Spencer & Riccardo Rodolfo-Metalpa & Sophie Martin & Emma Ransome & Maoz Fine & Suzanne M. Turner & Sonia J. Rowley & Dario Tedesco & Maria-Cristina Buia, 2008. "Volcanic carbon dioxide vents show ecosystem effects of ocean acidification," Nature, Nature, vol. 454(7200), pages 96-99, July.
  • Handle: RePEc:nat:nature:v:454:y:2008:i:7200:d:10.1038_nature07051
    DOI: 10.1038/nature07051
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07051
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    2. Thanh Viet Nguyen & Tuyen Quang Tran & Dewan Ahsan, 2022. "Aquaculture Farmers' Economic Risks Due to Climate Change: Evidence from Vietnam," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 8(1), pages 42-53.
    3. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
    4. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    5. Nathalie Hilmi & Denis Allemand & Mine Cinar & Sarah Cooley & Jason Hall-Spencer & Gunnar Haraldsson & Caroline Hattam & Ross Jeffree & James Orr & Katrin Rehdanz & Stéphanie Reynaud & Alain Safa & Sa, 2014. "Exposure of Mediterranean countries to ocean acidification," Post-Print hal-03211779, HAL.
    6. Campbell, Maria S. & Stehfest, Kilian M. & Votier, Stephen C. & Hall-Spencer, Jason M., 2014. "Mapping fisheries for marine spatial planning: Gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy," Marine Policy, Elsevier, vol. 45(C), pages 293-300.
    7. Luís C. Rodrigues & Jeroen C. J. M. Bergh & Maria L. Loureiro & Paulo A. L. D. Nunes & Sergio Rossi, 2016. "The Cost of Mediterranean Sea Warming and Acidification: A Choice Experiment Among Scuba Divers at Medes Islands, Spain," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 289-311, February.
    8. Edison D. Macusi & Nitcel Aymie Albarido & Misael B. Clapano & Mudjekeewis D. Santos, 2022. "Vulnerability Assessment of Pacific Whiteleg Shrimp ( Penaeus vannamei ) Farms and Vendors in Davao, Philippines Using FishVool," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    9. Punt, André E. & Poljak, Dusanka & Dalton, Michael G. & Foy, Robert J., 2014. "Evaluating the impact of ocean acidification on fishery yields and profits: The example of red king crab in Bristol Bay," Ecological Modelling, Elsevier, vol. 285(C), pages 39-53.
    10. Israt Jahan & Dewan Ahsan & Md Hasan Farque, 2017. "Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia: evidence from Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 461-478, April.
    11. Richards, Russell & Chaloupka, Milani & Sanò, Marcello & Tomlinson, Rodger, 2011. "Modelling the effects of ‘coastal’ acidification on copper speciation," Ecological Modelling, Elsevier, vol. 222(19), pages 3559-3567.
    12. J. Mohorčich, 2020. "Energy Intensity and Human Mobility after the Anthropocene," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    13. Paula S. M. Celis-Plá & Brezo Martínez & Nathalie Korbee & Jason M. Hall-Spencer & Félix L. Figueroa, 2017. "Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae)," Climatic Change, Springer, vol. 142(1), pages 67-81, May.
    14. Huanan Li & Quande Qin, 2017. "Optimal selection of different CCS technologies under CO2 reduction targets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1197-1209, September.
    15. Paraskevi N. Polymenakou & Paraskevi Nomikou & Haris Zafeiropoulos & Manolis Mandalakis & Thekla I. Anastasiou & Stephanos Kilias & Nikos C. Kyrpides & Georgios Kotoulas & Antoniοs Magoulas, 2021. "The Santorini Volcanic Complex as a Valuable Source of Enzymes for Bioenergy," Energies, MDPI, vol. 14(5), pages 1-12, March.
    16. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    17. Simone Simeone & Emanuela Molinaroli & Alessandro Conforti & Giovanni Falco, 2018. "Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach," Climatic Change, Springer, vol. 150(3), pages 227-242, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:454:y:2008:i:7200:d:10.1038_nature07051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.