IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v447y2007i7147d10.1038_nature05977.html
   My bibliography  Save this article

Expandable DNA repeats and human disease

Author

Listed:
  • Sergei M. Mirkin

    (Tufts University)

Abstract

Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA. These DNA repeats seem to be predisposed to such expansion because they have unusual structural features, which disrupt the cellular replication, repair and recombination machineries. The presence of expanded DNA repeats alters gene expression in human cells, leading to disease. Surprisingly, many of these debilitating diseases are caused by repeat expansions in the non-coding regions of their resident genes. It is becoming clear that the peculiar structures of repeat-containing transcripts are at the heart of the pathogenesis of these diseases.

Suggested Citation

  • Sergei M. Mirkin, 2007. "Expandable DNA repeats and human disease," Nature, Nature, vol. 447(7147), pages 932-940, June.
  • Handle: RePEc:nat:nature:v:447:y:2007:i:7147:d:10.1038_nature05977
    DOI: 10.1038/nature05977
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05977
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corella S. Casas-Delucchi & Manuel Daza-Martin & Sophie L. Williams & Gideon Coster, 2022. "The mechanism of replication stalling and recovery within repetitive DNA," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Miho M. Suzuki & Kenta Iijima & Koichi Ogami & Keiko Shinjo & Yoshiteru Murofushi & Jingqi Xie & Xuebing Wang & Yotaro Kitano & Akira Mamiya & Yuji Kibe & Tatsunori Nishimura & Fumiharu Ohka & Ryuta S, 2023. "TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Pengyu Chen & Guanglin He & Xing Zou & Mengge Wang & Fuquan Jia & Huiru Bai & Jida Li & Jian Yu & Yanyan Han, 2018. "Forensic characterization and genetic polymorphisms of 19 X-chromosomal STRs in 1344 Han Chinese individuals and comprehensive population relationship analyses among 20 Chinese groups," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-21, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:447:y:2007:i:7147:d:10.1038_nature05977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.