IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31657-x.html
   My bibliography  Save this article

The mechanism of replication stalling and recovery within repetitive DNA

Author

Listed:
  • Corella S. Casas-Delucchi

    (Chester Beatty Laboratories)

  • Manuel Daza-Martin

    (Chester Beatty Laboratories)

  • Sophie L. Williams

    (Chester Beatty Laboratories)

  • Gideon Coster

    (Chester Beatty Laboratories)

Abstract

Accurate chromosomal DNA replication is essential to maintain genomic stability. Genetic evidence suggests that certain repetitive sequences impair replication, yet the underlying mechanism is poorly defined. Replication could be directly inhibited by the DNA template or indirectly, for example by DNA-bound proteins. Here, we reconstitute replication of mono-, di- and trinucleotide repeats in vitro using eukaryotic replisomes assembled from purified proteins. We find that structure-prone repeats are sufficient to impair replication. Whilst template unwinding is unaffected, leading strand synthesis is inhibited, leading to fork uncoupling. Synthesis through hairpin-forming repeats is rescued by replisome-intrinsic mechanisms, whereas synthesis of quadruplex-forming repeats requires an extrinsic accessory helicase. DNA-induced fork stalling is mechanistically similar to that induced by leading strand DNA lesions, highlighting structure-prone repeats as an important potential source of replication stress. Thus, we propose that our understanding of the cellular response to replication stress may also be applied to DNA-induced replication stalling.

Suggested Citation

  • Corella S. Casas-Delucchi & Manuel Daza-Martin & Sophie L. Williams & Gideon Coster, 2022. "The mechanism of replication stalling and recovery within repetitive DNA," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31657-x
    DOI: 10.1038/s41467-022-31657-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31657-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31657-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sergei M. Mirkin, 2007. "Expandable DNA repeats and human disease," Nature, Nature, vol. 447(7147), pages 932-940, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengyu Chen & Guanglin He & Xing Zou & Mengge Wang & Fuquan Jia & Huiru Bai & Jida Li & Jian Yu & Yanyan Han, 2018. "Forensic characterization and genetic polymorphisms of 19 X-chromosomal STRs in 1344 Han Chinese individuals and comprehensive population relationship analyses among 20 Chinese groups," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-21, September.
    2. Miho M. Suzuki & Kenta Iijima & Koichi Ogami & Keiko Shinjo & Yoshiteru Murofushi & Jingqi Xie & Xuebing Wang & Yotaro Kitano & Akira Mamiya & Yuji Kibe & Tatsunori Nishimura & Fumiharu Ohka & Ryuta S, 2023. "TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31657-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.