IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v443y2006i7107d10.1038_nature05049.html
   My bibliography  Save this article

Interference among deleterious mutations favours sex and recombination in finite populations

Author

Listed:
  • Peter D. Keightley

    (University of Edinburgh)

  • Sarah P. Otto

    (University of British Columbia)

Abstract

The question of sex For decades scientists have been seeking to understand the evolutionary forces behind the emergence of sex and recombination. The need to purge deleterious mutations from the genome is one possible driving force. For this idea to be valid, deleterious mutations would probably need to exhibit negative epistasis — that is, they would act synergistically to produce a large cumulative effect. However, experimental evidence suggests that such negative epistasis is uncommon. Now, by invoking a concept called Hill–Robertson interference, Peter Keightley and Sarah Otto have developed a computer simulation that selects for recombination regardless of whether deleterious mutations exhibit epistasis. This provides a robust explanation for the evolution of recombination, and perhaps of sex.

Suggested Citation

  • Peter D. Keightley & Sarah P. Otto, 2006. "Interference among deleterious mutations favours sex and recombination in finite populations," Nature, Nature, vol. 443(7107), pages 89-92, September.
  • Handle: RePEc:nat:nature:v:443:y:2006:i:7107:d:10.1038_nature05049
    DOI: 10.1038/nature05049
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature05049
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature05049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    3. Kermany, Amir R. & Lessard, Sabin, 2012. "Effect of epistasis and linkage on fixation probability in three-locus models: An ancestral recombination–selection graph approach," Theoretical Population Biology, Elsevier, vol. 82(2), pages 131-145.
    4. Rouzine, Igor M. & Coffin, John M., 2010. "Multi-site adaptation in the presence of infrequent recombination," Theoretical Population Biology, Elsevier, vol. 77(3), pages 189-204.
    5. Gustavo V. Barroso & Nataša Puzović & Julien Y Dutheil, 2019. "Inference of recombination maps from a single pair of genomes and its application to ancient samples," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-21, November.
    6. Manuel Beltrán Del Río & Christopher R. Stephens & David A. Rosenblueth, 2015. "Fitness Landscape Epistasis And Recombination," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-38, November.
    7. Roger D Kouyos & Gabriel E Leventhal & Trevor Hinkley & Mojgan Haddad & Jeannette M Whitcomb & Christos J Petropoulos & Sebastian Bonhoeffer, 2012. "Exploring the Complexity of the HIV-1 Fitness Landscape," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-9, March.
    8. Masel, Joanna & Lyttle, David N., 2011. "The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species," Theoretical Population Biology, Elsevier, vol. 80(4), pages 317-322.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:443:y:2006:i:7107:d:10.1038_nature05049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.