IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v439y2006i7075d10.1038_nature04421.html
   My bibliography  Save this article

Atomic packing and short-to-medium-range order in metallic glasses

Author

Listed:
  • H. W. Sheng

    (Johns Hopkins University)

  • W. K. Luo

    (Johns Hopkins University)

  • F. M. Alamgir

    (National Institute of Standards and Technology)

  • J. M. Bai

    (Oak Ridge National Laboratory)

  • E. Ma

    (Johns Hopkins University)

Abstract

Unlike the well-defined long-range order that characterizes crystalline metals, the atomic arrangements in amorphous alloys remain mysterious at present. Despite intense research activity on metallic glasses and relentless pursuit of their structural description, the details of how the atoms are packed in amorphous metals are generally far less understood than for the case of network-forming glasses. Here we use a combination of state-of-the-art experimental and computational techniques to resolve the atomic-level structure of amorphous alloys. By analysing a range of model binary systems that involve different chemistry and atomic size ratios, we elucidate the different types of short-range order as well as the nature of the medium-range order. Our findings provide a reality check for the atomic structural models proposed over the years, and have implications for understanding the nature, forming ability and properties of metallic glasses.

Suggested Citation

  • H. W. Sheng & W. K. Luo & F. M. Alamgir & J. M. Bai & E. Ma, 2006. "Atomic packing and short-to-medium-range order in metallic glasses," Nature, Nature, vol. 439(7075), pages 419-425, January.
  • Handle: RePEc:nat:nature:v:439:y:2006:i:7075:d:10.1038_nature04421
    DOI: 10.1038/nature04421
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04421
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian A. Kube & Sungwoo Sohn & Rodrigo Ojeda-Mota & Theo Evers & William Polsky & Naijia Liu & Kevin Ryan & Sean Rinehart & Yong Sun & Jan Schroers, 2022. "Compositional dependence of the fragility in metallic glass forming liquids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yao Zhang & Zezhou Li & Xing Tong & Zhiheng Xie & Siwei Huang & Yue-E Zhang & Hai-Bo Ke & Wei-Hua Wang & Jihan Zhou, 2024. "Three-dimensional atomic insights into the metal-oxide interface in Zr-ZrO2 nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Thomas J. Hardin & Michael Chandross & Rahul Meena & Spencer Fajardo & Dimitris Giovanis & Ioannis Kevrekidis & Michael L. Falk & Michael D. Shields, 2024. "Revealing the hidden structure of disordered materials by parameterizing their local structural manifold," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Yihuan Cao & Ming Yang & Qing Du & Fu-Kuo Chiang & Yingjie Zhang & Shi-Wei Chen & Yubin Ke & Hongbo Lou & Fei Zhang & Yuan Wu & Hui Wang & Suihe Jiang & Xiaobin Zhang & Qiaoshi Zeng & Xiongjun Liu & Z, 2024. "Continuous polyamorphic transition in high-entropy metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Kejun Bu & Qingyang Hu & Xiaohuan Qi & Dong Wang & Songhao Guo & Hui Luo & Tianquan Lin & Xiaofeng Guo & Qiaoshi Zeng & Yang Ding & Fuqiang Huang & Wenge Yang & Ho-Kwang Mao & Xujie Lü, 2022. "Nested order-disorder framework containing a crystalline matrix with self-filled amorphous-like innards," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Xingjia He & Yu Zhang & Xinlei Gu & Jiangwei Wang & Jinlei Qi & Jun Hao & Longpeng Wang & Hao Huang & Mao Wen & Kan Zhang & Weitao Zheng, 2023. "Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Jayalakshmi, S. & Vasantha, V.S. & Fleury, E. & Gupta, M., 2012. "Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications," Applied Energy, Elsevier, vol. 90(1), pages 94-99.
    9. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7075:d:10.1038_nature04421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.