IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v434y2005i7034d10.1038_nature03358.html
   My bibliography  Save this article

Modes of faulting at mid-ocean ridges

Author

Listed:
  • W. Roger Buck

    (Lamont-Doherty Earth Observatory of Columbia University)

  • Luc L. Lavier

    (California Institute of Technology
    University of Texas at Austin)

  • Alexei N. B. Poliakov

    (Royal Bank of Canada)

Abstract

Abyssal-hill-bounding faults that pervade the oceanic crust are the most common tectonic feature on the surface of the Earth. The recognition that these faults form at plate spreading centres came with the plate tectonic revolution. Recent observations reveal a large range of fault sizes and orientations; numerical models of plate separation, dyke intrusion and faulting require at least two distinct mechanisms of fault formation at ridges to explain these observations. Plate unbending with distance from the top of an axial high reproduces the observed dip directions and offsets of faults formed at fast-spreading centres. Conversely, plate stretching, with differing amounts of constant-rate magmatic dyke intrusion, can explain the great variety of fault offset seen at slow-spreading ridges. Very-large-offset normal faults only form when about half the plate separation at a ridge is accommodated by dyke intrusion.

Suggested Citation

  • W. Roger Buck & Luc L. Lavier & Alexei N. B. Poliakov, 2005. "Modes of faulting at mid-ocean ridges," Nature, Nature, vol. 434(7034), pages 719-723, April.
  • Handle: RePEc:nat:nature:v:434:y:2005:i:7034:d:10.1038_nature03358
    DOI: 10.1038/nature03358
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03358
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Theunissen & Ritske S. Huismans, 2022. "Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ivan Koulakov & Vera Schlindwein & Mingqi Liu & Taras Gerya & Andrey Jakovlev & Aleksey Ivanov, 2022. "Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xiaochuan Tian & Mark D. Behn & Garrett Ito & Jana C. Schierjott & Boris J. P. Kaus & Anton A. Popov, 2024. "Magmatism controls global oceanic transform fault topography," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jie Chen & Wayne C. Crawford & Mathilde Cannat, 2023. "Microseismicity and lithosphere thickness at a nearly-amagmatic oceanic detachment fault system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:434:y:2005:i:7034:d:10.1038_nature03358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.