IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36169-w.html
   My bibliography  Save this article

Microseismicity and lithosphere thickness at a nearly-amagmatic oceanic detachment fault system

Author

Listed:
  • Jie Chen

    (CNRS)

  • Wayne C. Crawford

    (CNRS)

  • Mathilde Cannat

    (CNRS)

Abstract

Oceanic detachment faults play a central role in accommodating the plate divergence at slow-ultraslow spreading mid-ocean ridges. Successive flip-flop detachment faults in a nearly-amagmatic region of the ultraslow spreading Southwest Indian Ridge (SWIR) at 64°30’E accommodate ~100% of plate divergence, with mostly ultramafic smooth seafloor. Here we present microseismicity data, recorded by ocean bottom seismometers, showing that the axial brittle lithosphere is on the order of 15 km thick under the nearly-amagmatic smooth seafloor, which is no thicker than under nearby volcanic seafloor or at more magmatic SWIR detachment systems. Our data reveal that microearthquakes with normal focal mechanisms are colocated with seismically-imaged damage zones of the active detachment fault and of antithetic hanging-wall faults. The level of the hanging-wall seismicity is significantly higher than that documented at more magmatic detachments of slow-ultraslow ridges, which may be a unique feature of nearly-amagmatic flip-flop detachment systems.

Suggested Citation

  • Jie Chen & Wayne C. Crawford & Mathilde Cannat, 2023. "Microseismicity and lithosphere thickness at a nearly-amagmatic oceanic detachment fault system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36169-w
    DOI: 10.1038/s41467-023-36169-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36169-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36169-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chunhui Tao & W. E. Seyfried & R. P. Lowell & Yunlong Liu & Jin Liang & Zhikui Guo & Kang Ding & Huatian Zhang & Jia Liu & Lei Qiu & Igor Egorov & Shili Liao & Minghui Zhao & Jianping Zhou & Xianming , 2020. "Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Vera Schlindwein & Florian Schmid, 2016. "Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere," Nature, Nature, vol. 535(7611), pages 276-279, July.
    3. J. R. Cann & D. K. Blackman & D. K. Smith & E. McAllister & B. Janssen & S. Mello & E. Avgerinos & A. R. Pascoe & J. Escartin, 1997. "Corrugated slip surfaces formed at ridge–transform intersections on the Mid-Atlantic Ridge," Nature, Nature, vol. 385(6614), pages 329-332, January.
    4. W. Roger Buck & Luc L. Lavier & Alexei N. B. Poliakov, 2005. "Modes of faulting at mid-ocean ridges," Nature, Nature, vol. 434(7034), pages 719-723, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Koulakov & Vera Schlindwein & Mingqi Liu & Taras Gerya & Andrey Jakovlev & Aleksey Ivanov, 2022. "Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Thomas Theunissen & Ritske S. Huismans, 2022. "Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. John M. O’Connor & Wilfried Jokat & Peter J. Michael & Mechita C. Schmidt-Aursch & Daniel P. Miggins & Anthony A. P. Koppers, 2021. "Thermochemical anomalies in the upper mantle control Gakkel Ridge accretion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. T. M. Morganti & B. M. Slaby & A. Kluijver & K. Busch & U. Hentschel & J. J. Middelburg & H. Grotheer & G. Mollenhauer & J. Dannheim & H. T. Rapp & A. Purser & A. Boetius, 2022. "Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Xiaochuan Tian & Mark D. Behn & Garrett Ito & Jana C. Schierjott & Boris J. P. Kaus & Anton A. Popov, 2024. "Magmatism controls global oceanic transform fault topography," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhikai Wang & Satish C. Singh, 2022. "Seismic evidence for uniform crustal accretion along slow-spreading ridges in the equatorial Atlantic Ocean," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36169-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.