IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v423y2003i6937d10.1038_nature01658.html
   My bibliography  Save this article

Osteoclast differentiation and activation

Author

Listed:
  • William J. Boyle

    (Protein Pathways, Inc.)

  • W. Scott Simonet

    (Amgen, Inc.)

  • David L. Lacey

    (Amgen, Inc.)

Abstract

Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.

Suggested Citation

  • William J. Boyle & W. Scott Simonet & David L. Lacey, 2003. "Osteoclast differentiation and activation," Nature, Nature, vol. 423(6937), pages 337-342, May.
  • Handle: RePEc:nat:nature:v:423:y:2003:i:6937:d:10.1038_nature01658
    DOI: 10.1038/nature01658
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01658
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nidhi Rohatgi & Wei Zou & Yongjia Li & Kevin Cho & Patrick L. Collins & Eric Tycksen & Gaurav Pandey & Carl J. DeSelm & Gary J. Patti & Anwesha Dey & Steven L. Teitelbaum, 2023. "BAP1 promotes osteoclast function by metabolic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Lavinia Paternoster & Mattias Lorentzon & Liesbeth Vandenput & Magnus K Karlsson & Ă–sten Ljunggren & Andreas Kindmark & Dan Mellstrom & John P Kemp & Caroline E Jarett & Jeff M P Holly & Adrian Sayers, 2010. "Genome-Wide Association Meta-Analysis of Cortical Bone Mineral Density Unravels Allelic Heterogeneity at the RANKL Locus and Potential Pleiotropic Effects on Bone," PLOS Genetics, Public Library of Science, vol. 6(11), pages 1-12, November.
    3. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    4. Yasuaki Uehara & Yusuke Tanaka & Shuyang Zhao & Nikolaos M. Nikolaidis & Lori B. Pitstick & Huixing Wu & Jane J. Yu & Erik Zhang & Yoshihiro Hasegawa & John G. Noel & Jason C. Gardner & Elizabeth J. K, 2023. "Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Wenjing Jin & Xianfeng Lin & Haihua Pan & Chenchen Zhao & Pengcheng Qiu & Ruibo Zhao & Zihe Hu & Yanyan Zhou & Haiyan Wu & Xiao Chen & Hongwei Ouyang & Zhijian Xie & Ruikang Tang, 2021. "Engineered osteoclasts as living treatment materials for heterotopic ossification therapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Xiaming Du & Chao Zhang & Xiangqi Zhang & Zhen Qi & Sulin Cheng & Shenglong Le, 2021. "The Impact of Nordic Walking on Bone Properties in Postmenopausal Women with Pre-Diabetes and Non-Alcohol Fatty Liver Disease," IJERPH, MDPI, vol. 18(14), pages 1-10, July.
    7. Zhenxi Li & Xinghai Yang & Ruifeng Fu & Zhipeng Wu & Shengzhao Xu & Jian Jiao & Ming Qian & Long Zhang & Chunbiao Wu & Tianying Xie & Jiqiang Yao & Zhixiang Wu & Wenjun Li & Guoli Ma & Yu You & Yihua , 2024. "Kisspeptin-10 binding to Gpr54 in osteoclasts prevents bone loss by activating Dusp18-mediated dephosphorylation of Src," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:423:y:2003:i:6937:d:10.1038_nature01658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.